Please wait a minute...
 
最新公告: 关于寒假期间版面费发票延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (11): 158-162    DOI: 10.16606/j.cnki.issn0253-4320.2018.11.034
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
生物炭-厌氧活性污泥系统降解煤气化废水的研究
李雅婕1,3, 刘宏波2,3, 张振家4
1. 苏州科技大学环境科学与工程学院, 江苏 苏州 215009;
2. 江南大学环境与土木工程学院, 江苏 无锡 214122;
3. 江苏省厌氧生物技术重点实验室, 江苏 无锡 214122;
4. 上海交通大学环境科学与工程学院, 上海 200240
Study on biochar-anaerobic activated sludge system to degrade coal gasification wastewater
LI Ya-jie1,3, LIU Hong-bo2,3, ZHANG zhen-jia4
1. School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;
2. School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China;
3. Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China;
4. School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
下载:  PDF (1622KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 煤气化废水中含有焦油、苯酚、氨氮、氟化物、硫化物、杂环类、多环芳烃等有毒及难降解物质,处理难度大,污染物浓度高。采用竹制生物炭构建生物炭-厌氧活性污泥系统,考察pH、生物炭质量浓度对系统处理煤气化废水的效能。采用颗粒内扩散方程对试验数据进行拟合,结果表明,在pH=8时COD和总酚的处理效果优于偏酸性(pH=6)条件,系统COD降到600 mg/L,总酚降到50 mg/L;在此条件下,当生物炭的质量浓度为20 g/L时,总酚可完全去除。通过对试验数据用颗粒内扩散方程进行拟合,结果表明,生物炭-厌氧活性污泥体系处理煤气化废水中的COD和苯酚的去除主要是生物炭的颗粒吸附作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雅婕
刘宏波
张振家
关键词:  煤气化废水  厌氧  生物炭  颗粒内扩散    
Abstract: Typical coal gasification wastewater contains high concentration of tar,phenol,ammonia-containing compounds,fluorides,sulphides,heterocycles,polycyclic aromatic hydrocarbon and other toxic and refractory substances,which is difficult to degrade.Bamboo-derived biochar is utilized to set up a biochar-anaerobic activated sludge system that is used to treat with coal gasification wastewater.Influences of pH and mass content of biochar on the treatment efficiency are investigated.Moreover,the test data are fit by the intraparticle diffusion equation.It is indicated that the removal effects of COD and total phenol under pH=8 are better than that under pH=6,and COD content can drop to 600 mg·L-1 and total phenol content can decrease to 50 mg·L-1.Under pH=8,total phenol can be completely removed when the dosage of biochar is 20 g·L-1.Based on fitting the experimental data with intraparticle diffusion equation,the results show that the removal of COD and total phenol depends mainly on the adsorption action of biochar particles in the biochar-anaerobic activated sludge system.
Key words:  coal gasification wastewater    anaerobic    biochar    intraparticle diffusion
收稿日期:  2018-02-22      修回日期:  2018-09-12          
X506  
基金资助: 苏州市农业科技创新项目(SNG2018049)
通讯作者:  李雅婕(1982-),女,博士,讲师,研究方向为水处理技,通讯联系人,yajieli19820820@126.com。    E-mail:  yajieli19820820@126.com
引用本文:    
李雅婕, 刘宏波, 张振家. 生物炭-厌氧活性污泥系统降解煤气化废水的研究[J]. 现代化工, 2018, 38(11): 158-162.
LI Ya-jie, LIU Hong-bo, ZHANG zhen-jia. Study on biochar-anaerobic activated sludge system to degrade coal gasification wastewater. Modern Chemical Industry, 2018, 38(11): 158-162.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.11.034  或          http://www.xdhg.com.cn/CN/Y2018/V38/I11/158
[1] 何玉玲,褚春凤,张振家.高浓度煤气化废水处理技术研究进展[J].工业水处理,2016,36(9):16-20.
[2] Li Y J,Tabassum S,Yu Z J,et al.Effect of effluent recirculation rate on the performance of anaerobic bio-filter treating coal gasification wastewater under co-digestion conditions[J].RSC Adv,2016,6:87926-87934.
[3] Jia S Y,Han H J,Zhuang H F,et al.Impact of high external circulation ratio on the performance of anaerobic reactor treating coal gasification wastewater under thermophilic condition[J].Bioresour Technol,2015,192:507-513.
[4] Wang W,Han H J,Yuan M,Li,et al.Enhanced anaerobic biodegradability of real coal gasification wastewater with methanol addition[J].J Environ Sci,2010,22:1868-1874.
[5] Wang W,Ma W C,Han H J,et al.Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor[J].Bioresour Technol,2011,102:2441-2447.
[6] Wang W,Han H J,Yuan M,et al.Treatment of coal gasification wastewater by a two-continuous UASB system with step-feed for COD and phenols removal[J].Bioresour Technol,2011,102:5454-5460.
[7] Wang W,Han H J.Recovery strategies for tackling the impact of phenolic compounds in a UASB reactor treating coal gasification wastewater[J].Bioresour Technol,2012,103:95-100.
[8] Karami N,Clemente R,Morenojim E,et al.Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass[J].J Hazard Mater,2011,191(1):41-48.
[9] Zimmerman A.Abiotic and microbial oxidation of laboratory-produced black carbon (biochar)[J].Environ Sci Technol,2010,44(4):1295-1301.
[10] Gaskin J,Steiner C,Harris K,et al.Effect of low-temperature pyrolysis conditions on biochar for agricultural use[J].Transactions of the ASABE,2008,51(6):2016-2069.
[11] Luo C H,Lu F,Shao L M,et al.Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes[J].Water Res,2015,68:710-718.
[12] Inthapanya S,Preston T R,Leng R A.Biochar increases biogas production in a batch digester charged with cattle manure[J].LRRD,2012,24:20-23.
[13] Chen S S,Rotaru A E,Shrestha P M,et al.Promoting interspecies electron transfer with biochar[J].Sci Rep,2014,4:5019-5022.
[14] Yang X Y,Al-duri B.Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon[J].J Colloid Interface Sci,2005,287(1):25-34.
[15] 颜家保,余永登.苯酚降解菌的分离及其降解特性研究[J].武汉科技大学学报,2014,37(6):458-462.
[1] 纪钦洪, 于广欣, 于航, 熊亮, 孙玉平, 刘强. 包埋菌膨胀床脱氮工艺处理煤气化废水[J]. 现代化工, 2018, 38(8): 176-179.
[2] 刘天天, 毕升阁, 惠丰立, 王林风, 闫德冉, 王奇. 木薯酒糟两相和单相厌氧发酵性能比较[J]. 现代化工, 2018, 38(6): 175-178,180.
[3] 赵如恒, 李凯, 宁平, 梅毅, 孙鑫, 王驰. 生物炭干法同时脱硫脱硝脱汞研究进展[J]. 现代化工, 2018, 38(10): 71-75.
[4] 纪钦洪. 厌氧-好氧组合工艺处理鲁奇炉气化废水试验研究[J]. 现代化工, 2017, 37(8): 178-181.
[5] 王雅君, 李姗珊, 姚宗路, 赵立欣, 邱凌. 生物炭生产工艺与还田效果研究进展[J]. 现代化工, 2017, 37(5): 17-20.
[6] 唐弓斌, 陈一帆, 肖锋, 张姗姗, 唐彩珍, 黄福川. 餐厨垃圾厌氧产氢净化工艺研究[J]. 现代化工, 2017, 37(3): 183-186.
[7] 陶术平, 向速林, 桑文静, 沈峥, 王道京, 袁吉. 生物炭对土壤重金属影响研究进展[J]. 现代化工, 2017, 37(1): 45-49.
[8] 王忠科, 李刚, 王格格, 陆江银, 王建俊. 污泥-锯末共热解生物炭的制备及土壤应用[J]. 现代化工, 2017, 37(1): 147-150,152.
[9] 徐鹏, 穆献中. 餐厨垃圾在能源生产中的应用与发展[J]. 现代化工, 2016, 36(5): 12-16.
[10] 唐朝春, 段先月, 陈惠民, 叶鑫. 餐厨垃圾联合厌氧消化研究进展[J]. 现代化工, 2016, 36(4): 34-37,39.
[11] 郜晋楠, 郑超, 马晓建. 木质纤维素类生物质厌氧消化预处理技术研究进展[J]. 现代化工, 2016, 36(3): 20-23,25.
[12] 柴阳, 田永兰, 郝和, 江伟, 熊元武, 张化永. 磷酸预处理对芦苇秸秆与牛粪混合厌氧发酵的影响[J]. 现代化工, 2016, 36(11): 86-89.
[13] 张存胜, 王振斌, 邵淑萍. 超声波强化醋糟产氢废水厌氧消化产甲烷性能研究[J]. 现代化工, 2016, 36(10): 100-103.
[14] 刘峰, 乔瑞平, 李海涛, 熊键, 杨映, 韩芳, 张伦梁, 蒋玮. 高含油煤气化废水除油预处理的工艺研究[J]. 现代化工, 2016, 36(1): 115-118.
[15] 韩越梅, 刘志军, 许晓飞, 黄士博, 闫卓, 刘凤霞. 气升式生物反应器用于废水脱氮的组合工艺研究[J]. 现代化工, 2016, 36(1): 160-163,165.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn