Please wait a minute...
 
最新公告: 关于寒假期间版面费发票延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (11): 148-152,154    DOI: 10.16606/j.cnki.issn0253-4320.2018.11.032
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
气液两相流强化卷式纳滤膜分离酵母/MgSO4混合溶液
蒋婉莹, 王枢, 王毅, 韦美华
西南交通大学生命科学与工程学院, 四川 成都 610031
Separation of yeast/MgSO4 mixture by spiral nanofiltration membrane enhanced by gas-liquid two-phase flow
JIANG Wan-ying, WANG Shu, WANG Yi, WEI Mei-hua
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
下载:  PDF (2416KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 考察了气液两相流在DK2540F卷式纳滤(NF)膜组件中对酵母/MgSO4混合物的强化分离效果。研究了不同条件下对卷式纳滤膜渗透通量、截留率和渗透通量增加率的影响。结果表明,两相流能够明显提高酵母/MgSO4混合物在卷式NF膜中的分离效果。在跨膜压力较高、气液比较大的条件下,酵母悬浮液的通量明显增强,通量增加率可达15.2%。同时,在分离酵母/MgSO4混合物时,跨膜压力越低,气液比越高,增强效果越好,渗透通量的增长率能够达到40%以上。另外,气液两相流几乎不影响MgSO4的截留率,且MgSO4的截留率几乎维持在90%~94%之间。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋婉莹
王枢
王毅
韦美华
关键词:  卷式纳滤膜  气液两相流  气液比  通量增加率  酵母/MgSO4混合液    
Abstract: The enhancement separation efficiency of yeast/MgSO4 mixtures via gas-liquid two-phase flow is evaluated in a DK2540F spiral nanofiltration membrane module.Investigation is performed to determine the effects of different conditions on permeate flux,rejection and permeate flux increase rate of the spiral nanofiltration membrane.The experimental results indicate that two-phase flow can obviously enhance the separation effect of yeast/MgSO4 mixture in spiral nanofiltration membranes.The permeate flux of yeast suspension is obviously enhanced by higher trans-membrane pressure and larger gas-liquid ratio,with a growth of 15.2%.Meanwhile,better enhancement effect for separating yeast-MgSO4 mixture can be achieved under lower trans-membrane pressure and higher gas-liquid ratio,and permeate flux can lift by 40% or more.Additionally,gas-liquid two-phase flow affect scarcely the rejection of MgSO4 that remains mostly between 90% and 94%.
Key words:  spiral nanofiltration membrane    gas-liquid two-phase flow    gas/liquid ratio    growth rate of permeate flux    yeast/MgSO4 mixture
收稿日期:  2018-03-12      修回日期:  2018-09-17          
TQ028  
基金资助: 四川省科技厅项目(2015NZ0097)
通讯作者:  王枢(1972-),男,博士,副教授,研究方向为膜分离,通讯联系人,wone_su@163.com。    E-mail:  wone_su@163.com
作者简介:  蒋婉莹(1991-),女,硕士研究生,研究方向为膜分离技术,JiangWanying951@163.com
引用本文:    
蒋婉莹, 王枢, 王毅, 韦美华. 气液两相流强化卷式纳滤膜分离酵母/MgSO4混合溶液[J]. 现代化工, 2018, 38(11): 148-152,154.
JIANG Wan-ying, WANG Shu, WANG Yi, WEI Mei-hua. Separation of yeast/MgSO4 mixture by spiral nanofiltration membrane enhanced by gas-liquid two-phase flow. Modern Chemical Industry, 2018, 38(11): 148-152,154.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.11.032  或          http://www.xdhg.com.cn/CN/Y2018/V38/I11/148
[1] Eriksson P.Water and salt transport through two types of polyamide composite membranes[J].Journal of Membrane Science,1988,36:297-313.
[2] In-Chul Kim,Kew-Ho Lee,Tae-Moon Tak.Preparation and characterization of integrally skinned uncharged polyetherimide asymmetric nanofiltration membrane[J].Journal of Membrane Science,2001,183(2):235-247.
[3] Petersen R J.Composite reverse osmosis and nanofiltration membranes[J].Journal of Membrane Science,1993,83(1):81-150.
[4] Raman L P,Cheryna M,Rajagopalan N.Consider nanofiltration for membrane separations[J].Chemical Engineering Progress;(United States),1994,90:3(3):68-74.
[5] Seungkwan Hong,Menachem Elimelech.Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes[J].Journal of Membrane Science,1997,132(2):159-181.
[6] Wang Xiaolin,Toshinori Tsuru,Shin-ichi Nakao,et al.The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes[J].Journal of Membrane Science,1997,135(97):19-32.
[7] Hilal N,Al-Zoubi H,Darwish N A,et al.A comprehensive review of nanofiltration membranes:Treatment,pretreatment,modelling,and atomic force microscopy[J].Desalination,2004,170(3):281-308.
[8] Zhao J,Du R.Properties of poly (N,N-dimethylaminoethyl methacrylate)/polysulfone positively charged composite nanofiltration membrane[J].Journal of Membrane Science,2004,239(2):183-188.
[9] Song Y,Liu F,Sun B.Preparation,Characterization,and application of Thin film composite nanofiltration membranes[J].Journal of Applied Polymer Science,2005,95(5):1251-1261.
[10] Zhang Z,Wang S,Chen H,et al.Preparation of polyamide membranes with improved chlorine resistance by bis-2,6-N,N-(2-hydroxyethyl) diaminotoluene and trimesoyl chloride[J].Desalination,2013,331(24):16-25.
[11] Vrouwenvelder J S,Da Graf,Kruithof J C,et al.Biofouling of spiral wound nanofiltration and reverse osmosis membranes:A feed spacer problem[J].Water Research,2009,43(3):583-594.
[12] Xu Y,Peng X,Tang C Y,et al.Effect of draw solution concentration and operating conditionson forward osmosis and pressure retarded osmosis performance in a spiral wound module[J].Journal of Membrane Science,2010,348(1-2):298-309.
[13] Mccutcheon J R,Elimelech M.Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis[J].Journal of Membrane Science,2006,284:237-247.
[14] Cornelissen E R,Rebour L,Kooij D V D,et al.Optimization of air/water cleaning (AWC) in spiral wound elements[J].Desalination,2009,236(1-3):266-272.
[15] Cui Z F,Wright K I T.Gas liquid two phase cross-flow ultrafiltration of BSA and dextran solutions[J].Journal of Membrane Science,1994,90(94):183-189.
[16] Chang I S,Sj J.Domestic wastewater treatment by a submerged MBR (membrane bio-reactor) with enhanced air sparging[J].Water Science & Technology,2003,47(12):149-154.
[17] Wibisono Y,Kemperman A J B,Meer W G J V D,et al.Two-phase flow in membrane processes:A technology with a future[J].Journal of Membrane Science,2014,453(3):566-602.
[18] Wibisono Y,Kemperman A J B,Meer W G J V D,et al.Two-phase flow in membrane processes:A technology with a future[J].Journal of Membrane Science,2014,453(3):566-602.
[19] Liu Q,Wang S,Guo Z,et al.Enhancement of spiral nanofiltration membranes using gas sparging:Application to MgSO4 solution[J].Ciesc Journal,2012,63(12):438-1157.
[20] Zaky A S,Tucker G A,Daw Z Y,et al.Marine yeast isolation and industrial application[J].Fems Yeast Research,2015,14(6):813-825.
[1] 肖北辰, 张鹏飞, 刘兆利, 侯建龙. 高压下旋风分离器进行气液分离的模拟与优化[J]. 现代化工, 2018, 38(11): 226-229.
[2] 周云龙, 孙振国. 2222[J]. 现代化工, 2016, 36(5): 179-182.
[3] 薄守石, 王剑, 白飞, 戴学智, 孙兰义. 鼓泡床反应器流动特性的CFD研究进展[J]. 现代化工, 2014, 34(7): 52-56.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn