Please wait a minute...
 
最新公告: 关于寒假期间版面费发票延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (11): 127-131    DOI: 10.16606/j.cnki.issn0253-4320.2018.11.027
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
石墨烯/二硫化钼/钴复合材料的结构和磁性
徐一帆1, 赵婧羽2, 叶双莉1
1. 武汉大学印刷与包装系, 湖北 武汉 430079;
2. 驻699厂军事代表处, 北京 100039
Microstructure and magnetic properties of RGO/MoS2/Co composites
XU Yi-fan1, ZHAO Jing-yu2, YE Shuang-li1
1. School of Printing and Packaging, Wuhan University, Wuhan 430079, China;
2. PLA 699 Factory, Beijing 100039, China
下载:  PDF (3542KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 介绍了两步水热反应制备石墨烯/二硫化钼/钴(RGO/MoS2/Co)复合物的方法,在保护气体Ar气中通过800℃退火提高Co的纯度。为了探究RGO/MoS2/Co复合物在柔性自旋器件方面的应用,利用X射线衍射、透射电镜、拉曼等技术对RGO/MoS2/Co的结构和形貌进行表征,并结合磁性测试(VSM)探讨其微观结构和磁性行为。结果发现,大小约10~20 nm钴粒子成功嵌入到网状交联的RGO/MoS2中,复合物在低温和常温下均表现出铁磁性,使其有望应用于设计的柔性自旋器件中。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐一帆
赵婧羽
叶双莉
关键词:  石墨烯/二硫化钼/钴  纳米复合物  水热法  磁性    
Abstract: RGO/MoS2/Co nanocomposites are fabricated through a facile two-step hydrothermal process and annealed in Ar at 800℃ to improve the purity of Co.The microstructure and magnetic properties of RGO/MoS2/Co nanocomposites are investigated by means of VSM and the structure and morphology of the nanocomposites are analyzed by X-ray diffraction (XRD),high-resolution transmission electron microscopy (HRTEM) and Raman spectra (RAMAN).These results display that Co nanoparticles with a size of 10-20 nm are trapped in the network of the crumpled RGO/MoS2.Magnetization measurements demonstrate that RGO/MoS2/Co shows ferromagnetic property,which supplies possibility that it can be used in the flexible spintronic devices designed.
Key words:  RGO/MoS2/Co    nanocomposites    hydrothermal    magnetism
收稿日期:  2018-03-28      修回日期:  2018-09-14          
O06  
基金资助: 国家自然科学基金(51371129)
通讯作者:  叶双莉(1975-),女,博士,教授,主要研究方向为低维纳米材料和纳米传感器,通讯联系人,slye@whu.edu.cn。    E-mail:  slye@whu.edu.cn
作者简介:  徐一帆(1991-),女,硕士研究生,主要研究方向为低维纳米材料,xuyifan8@whu.edu.cn
引用本文:    
徐一帆, 赵婧羽, 叶双莉. 石墨烯/二硫化钼/钴复合材料的结构和磁性[J]. 现代化工, 2018, 38(11): 127-131.
XU Yi-fan, ZHAO Jing-yu, YE Shuang-li. Microstructure and magnetic properties of RGO/MoS2/Co composites. Modern Chemical Industry, 2018, 38(11): 127-131.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.11.027  或          http://www.xdhg.com.cn/CN/Y2018/V38/I11/127
[1] Sun J,Qian J,Zhai M,et al.Nitrogen-tuned transition metal Co adatom embedded graphene[J].Chemical Physics Letters,2015,638:47-51.
[2] Geim A K.Graphene:Status and prospects[J].Science,2009,324(5934):1530-1534.
[3] He Q,Wu S,Yin Z,et al.Graphene-based electronic sensors[J].Chemical Science,2012,3(6):1764-1772.
[4] Yin S,Goldovsky Y,Herzberg M,et al.Functional free-standing graphene honeycomb films[J].Advanced Functional Materials,2013,23(23):2972-2978.
[5] Bao Q,Loh K P.Graphene photonics,plasmonics,and broadband optoelectronic devices[J].ACS Nano,2012,6(5):3677-3694.
[6] Wang H,Feng Q,Cheng Y,et al.Atomic bonding between metal and graphene[J].The Journal of Physical Chemistry C,2013,117(9):4632-4638.
[7] Vu A D,Coraux J,Chen G,et al.Unconventional magnetisation texture in graphene/cobalt hybrids[J].Scientific Reports,2016,6:24783.
[8] Jiang J W,Park H S,Rabczuk T.MoS2 nanoresonators:Intrinsically better than graphene[J].Nanoscale,2014,6(7):3618-3625.
[9] Butler S Z,Hollen S M,Cao L,et al.Progress,challenges,and opportunities in two-dimensional materials beyond graphene[J].ACS Nano,2013,7(4):2898-2926.
[10] Zhang X,Yang H D,Guo S J,et al.In situ growth of Ni-Fe alloy on graphene-like MoS2 for catalysis of hydrazine oxidation[J].J Mater Chem,2012,22(28):13925-13927.
[11] Yuwen L H,Xu F,Xue B,et al.General synthesis of noble metal (Au Ag,Pd,Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation[J].Nanoscale,2014,6:5762-5769.
[12] Xu M,Liang T,Shi M,et al.Graphene-like two-dimensional materials[J].Chemical Reviews,2013,113(5):3766-3798.
[13] Huang K J,Wang L,Li J,et al.Electrochemical sensing based on layered MoS2-graphene composites[J].Sensors and Actuators B:Chemical,2013,178:671-677.
[14] Tai G,Zeng T,Li H,et al.Temperature and pH effect on reduction of graphene oxides in aqueous solution[J].Materials Research Express,2014,1(3):035605.
[15] Chen Y,Wang Q,Zhu C,et al.Graphene/porous cobalt nanocomposite and its noticeable electrochemical hydrogen storage ability at room temperature[J].Journal of Materials Chemistry,2012,22(13):5924-5927.
[16] Yang S,Cui G,Pang S,et al.Fabrication of cobalt and cobalt oxide/graphene composites:Towards high-performance anode materials for lithium ion batteries[J].Chem Sus Chem,2010,(3):236-239.
[17] Li H,Zhang Q,Yap C C R,et al.From bulk to monolayer MoS2:Evolution of Raman scattering[J].Advanced Functional Materials,2012,22(7):1385-1390.
[18] McCreary A,Berkdemir A,Wang J,et al.Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods[J].Journal of Materials Research,2016,31(7):931-944.
[19] Zhang J,Yang H,Shen G,et al.Reduction of graphene oxide via L-ascorbic acid[J].Chemical Communications,2010,46(7):1112-1114.
[20] Zhu G X,Wei X W,Xia C J,et al.Solution route to single crystalline dendritic cobalt nanostructures coated with carbon shells[J].Carbon,2007,45(6):1160-1166.
[21] Gao D,Si M,Li J,et al.Ferromagnetism in freestanding MoS2 nanosheets[J].Nanoscale Research Letters,2013,8(1):129.
[1] 牛凤兴, 陈晨, 陈钰, 高晓明. 水热法制备Co/ZnO及其光催化降解邻苯二酚的研究[J]. 现代化工, 2018, 38(8): 99-102,104.
[2] 薛丹林, 黄金亮, 宁向梅, 李丽华, 顾永军, 李新利. 水热工艺对TiO2薄膜形貌结构及光学性能的影响[J]. 现代化工, 2018, 38(7): 98-102.
[3] 韩娜, 苏瑞, 王知贺, 谢艾玲, 李季, 徐仕翀. 软/硬磁纳米复相永磁材料制备及应用研究现状[J]. 现代化工, 2018, 38(6): 20-23.
[4] 景一操, 张怡, 吴煜, 刘学军. NaA分子筛膜的制备及其在吡啶脱水中的应用[J]. 现代化工, 2018, 38(6): 110-113.
[5] 李永刚, 俞双林, 俞小花, 和晓才, 冯攀, 徐庆鑫, 徐亚飞, 谢刚. 不同形貌锌酸钙的制备及其在锌镍电池中的应用研究[J]. 现代化工, 2018, 38(5): 81-84,86.
[6] 王璐, 杨烨, 李亚, 韩萍芳. 可磁分离凹凸棒黏土复合材料的溶剂热法制备及表征[J]. 现代化工, 2018, 38(5): 109-111,115.
[7] 王亚培, 徐军, 张晓晓, 徐文鹏. 含HF和KCl体系中SAPO-17分子筛的快速稳定合成和表征[J]. 现代化工, 2018, 38(5): 159-163.
[8] 胡春苗, 薛屏, 曹雪荣, 张玮玮. 磁性聚合物微球固定化青霉素G酰化酶用于催化合成头孢克洛[J]. 现代化工, 2018, 38(4): 95-99.
[9] 邵河, 王海彦, 康蕾. 可控氧化锌纳米结构的制备及其反应吸附脱硫性能研究[J]. 现代化工, 2018, 38(4): 114-117.
[10] 郑朝, 孙明轩, 张强, 吴泓要. 二硫化钼薄膜的原位制备及其光电化学性能研究[J]. 现代化工, 2018, 38(4): 122-125.
[11] 李子庆, 赫文秀, 张永强, 刘斌, 蒋梦. 两步法原位制备NiO/N-RGO复合材料及其电化学性能[J]. 现代化工, 2018, 38(3): 138-141,143.
[12] 李欣悦, 高仕谦, 董南巡, 钱飞跃, 张占恩. 磁性氧化石墨烯固相萃取-高效液相色谱质谱法测定水中的氟喹诺酮残留[J]. 现代化工, 2018, 38(3): 233-237.
[13] 韦克毅, 左晓琼, 刘晓敏, 陈兴, 凌军, 陈永娟, 陈道梅, 王家强. 磁性中性蛋白酶的固定化研究[J]. 现代化工, 2018, 38(2): 75-78.
[14] 于小林, 吴显明, 丁心雄, 李叶华, 刘立瑶, 石青峰. 水热法制备纳米片钛酸锂及其性质研究[J]. 现代化工, 2018, 38(2): 83-86.
[15] 杨梦晖, 金晶, 高仕谦, 顾海东, 张占恩. 磁性固相萃取-高效液相色谱串联三重四级杆质谱法测定环境水样中的磺胺类抗生素残留[J]. 现代化工, 2018, 38(2): 215-218.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn