Please wait a minute...
 
最新公告: 关于寒假期间版面费发票延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (11): 115-120    DOI: 10.16606/j.cnki.issn0253-4320.2018.11.025
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
车载甲醇在线重整制氢高性能铜锌铝催化剂的研究
黄骁, 李水荣, 浦云川, 王夺, 叶跃元, 刘运权
厦门大学能源学院, 福建 厦门 361102
Study on CuZnAl-oxides catalysts for on-board hydrogen production by methanol reforming
HUANG Xiao, LI Shui-rong, PU Yun-chuan, WANG Duo, YE Yue-yuan, LIU Yun-quan
College of Energy, Xiamen University, Xiamen 361102, China
下载:  PDF (1636KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了扩展传统铜锌铝催化剂在车载甲醇自热式重整(ATRM)制氢过程中的应用,采用反向共沉淀法制备了不同铜锌摩尔比的铜锌铝氧化物催化剂,并与工业铜锌铝催化剂SCST-401进行比较。结果发现,该类催化剂的性能随着铜锌摩尔比的增加而提高。其中,Cu30Zn10Al催化剂在200~600℃范围内具有最佳的ATRM反应性能,而不含铜的催化剂Zn40Al在500~600℃高温下具有与Cu20Zn20Al和Cu10Zn30Al相近的活性。此外,Cu30Zn10Al催化剂与商用催化剂SCST-401的甲醇转化率也相近,但前者铜的摩尔分数却远小于后者,且性能更稳定。在200~300℃的低温下其ATRM反应表现出更高的活性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄骁
李水荣
浦云川
王夺
叶跃元
刘运权
关键词:  车载制氢  甲醇  自热式重整  铜锌铝催化剂  稳定性    
Abstract: To study the feasibility of using conventional CuZnAl-oxides as catalysts for on-board hydrogen production by autothermal reforming of methanol (ATRM),CuZnAl-oxides catalyst with different copper-zinc ratios are prepared via reverse co-precipitation method.The samples are compared with commercial CuZnAl catalyst SCST-401.It is found that the performance of such type of catalysts improves with the increased mole ratio of copper to zinc.The prepared Cu30Zn10Al catalyst shows the best performance for ATRM in the range of 200-600℃,while Zn40Al catalyst is found to have the similar activity with those of Cu20Zn20Al and Cu10Zn30Al at the temperature from 500℃ to 600℃.In addition,Cu30Zn10Al catalyst can bring about similar methanol conversion with that brought by commercial catalyst SCST-401 that has a much higher copper content than Cu30Zn10Al.Cu30Zn10Al exhibits more stable than SCST-401.Furthermore,Cu30Zn10Al shows higher activity for ATRM at low temperature from 200℃ to 300℃.
Key words:  onboard hydrogen production    methanol    autothermal reforming    CuZnAl catalyst    stability
收稿日期:  2018-03-08      修回日期:  2018-09-12          
O643.3  
基金资助: 国家自然科学基金(NSFC-21276214);福建省科技厅重点项目(2016H6024);福建省自然科学基金(2015J05033)
通讯作者:  刘运权(1963-),男,博士,教授,研究方向为生物质热化学转化、节能减排等,通讯联系人,yq_liu@xmu.edu.cn。    E-mail:  yq_liu@xmu.edu.cn
作者简介:  黄骁(1991-),男,硕士研究生,研究方向为节能减排,xmu_huangxiao@163.com
引用本文:    
黄骁, 李水荣, 浦云川, 王夺, 叶跃元, 刘运权. 车载甲醇在线重整制氢高性能铜锌铝催化剂的研究[J]. 现代化工, 2018, 38(11): 115-120.
HUANG Xiao, LI Shui-rong, PU Yun-chuan, WANG Duo, YE Yue-yuan, LIU Yun-quan. Study on CuZnAl-oxides catalysts for on-board hydrogen production by methanol reforming. Modern Chemical Industry, 2018, 38(11): 115-120.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.11.025  或          http://www.xdhg.com.cn/CN/Y2018/V38/I11/115
[1] 李云燕,葛畅.我国三大区域PM2.5源解析研究进展[J].现代化工,2017,37(104):1-5,7.
[2] Mwangi J K,Lee W J,Chang Y C,et al.An overview:Energy saving and pollution reduction by using green fuel blends in diesel engines[J].Applied Energy,2015,159:214-36.
[3] Hairuddin A A,Talal Y,Andrew W P.A review of hydrogen and natural gas addition in diesel HCCI engines[J].Renewable Sustainable Energy Reviews,2014,32:739-61.
[4] Alrazen H A,Abu Talib A R,Adnan R,et al.A review of the effect of hydrogen addition on the performance and emissions of the compression-ignition engine[J].Renewable Sustainable Energy Reviews,2016,54:785-96.
[5] Fayaz H,Saidur R,Razali N,et al.An overview of hydrogen as a vehicle fuel[J].Renewable Sustainable Energy Reviews,2012,16(8):5511-5528.
[6] Szwaja S,Grab-Rogalinski K.Hydrogen combustion in a compression ignition diesel engine[J].International Journal of Hydrogen Energy,2009,34(10):4413-4421.
[7] Tyagi R K,Ranjan R.Effect of hydrogen and gasoline fuel blend on the performance of SI engine[J].Journal of Petroleum Technology and Alternative Fuels,2013,4(7):125-130.
[8] Saravanan N,Nagarajan G,Sanjay G,et al.Combustion analysis on a DI diesel engine with hydrogen in dual fuel mode[J].Fuel,2008,87:3591-3599.
[9] Wang F,Li L,Liu Y.Effects of flow and operation parameters on methanol steam reforming in tube reactor heated by simulated waste heat[J].International Journal of Hydrogen Energy,2017,42(42):26270-26276.
[10] 徐正好,常健,杨宗栋,等.余热制氢发动机的开发研究[J].小型内燃机与摩托车,2003,32(3):11-13.
[11] Sá S,Silva H,Brandão L,et al.Catalysts for methanol steam reforming-a review[J].Applied Catalysis B:Environmental,2010,99(1-2):43-57.
[12] Huang G,Liaw H J,Jhang C J,et al.Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts[J].Applied Catalysis A,2009,358(1):7-12.
[13] Li Y F,Dong X F,Lin W M.Effects of ZrO2-promoter on catalytic performance of CuZnAlO catalysts for production of hydrogen by steam reforming of methanol[J].International Journal of Hydrogen Energy,2004,29(15):1617-1621.
[14] Lindström B,Pettersson L J,Menon P G.Activity and characterization of Cu/Zn,Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles[J].Applied Catalysis A,2002,234(1-2):111-125.
[15] Behrens M,Kasatkin I,Kühl S,et al.Phase-pure Cu,Zn,Al hydrotalcite-like materials as precursors for copper rich Cu/ZnO/Al2O3 catalysts[J].Chemistry of Materials,2010,22(2):386-397.
[16] Kühl S,Friedrich M,Armbrüster M,et al.Cu,Zn,Al layered double hydroxides as precursors for copper catalysts in methanol steam reforming e pH-controlled synthesis by micro emulsion technique[J].Chemistry of Materials,2012,22:9632-9638.
[17] Shen J P,Song C.Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells[J].Catalysis Today,2002,77(1-2):89-98.
[18] Liang Y,Zhao M,Wang J,et al.Enhanced activity and stability of the monolithic Pt/SiO2-Al2O3 diesel oxidation catalyst promoted by suitable tungsten additive amount[J].Journal of Industrial and Engineering Chemistry,2017,54:359-368.
[19] Zhang-Steenwinkel Y,van der Zande LM,Castricum H L,et al.Microwave-assisted in-situ regeneration of a perovskite coated diesel soot filter[J].Chemical Engineering Science,2005,60(3):797-804.
[20] Fino D,Specchia V.Open issues in oxidative catalysis for diesel particulate abatement[J].Powder Technology,2008,180(1-2):64-73.
[21] Turco M,Bagnasco G,Cammarano C,et al.Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol:The role of Cu and the dispersing oxide matrix[J].Applied Catalysis B,2007,77(1-2):46-57.
[22] Turco M,Bagnasco G,Cammarano C,
et al.Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol:The role of Cu and the dispersing oxide matrix[J].Applied Catalysis B,2007,77(1-2):46-57.
[23] 刘向民.车用柴油机氧化催化器快速老化试验方法的研究[D].武汉:武汉理工大学,2003.
[1] 宋利军. 甲醇作为车用汽油调合组分的利弊分析[J]. 现代化工, 2018, 38(8): 12-16.
[2] 刘经伟, 傅玉川, 沈俭一. 载体TiO2晶型对甲醇选择氧化性能的影响[J]. 现代化工, 2018, 38(8): 112-116.
[3] 刘杰, 孙美婷, 李玲. 一种液化分离二氧化碳净化工艺[J]. 现代化工, 2018, 38(8): 206-208.
[4] 徐珍珍, 祝志峰, 李伟, 张朝辉. 季铵醚化-辛烯基琥珀酸酯化淀粉浆料的稳定性及生物降解性[J]. 现代化工, 2018, 38(7): 107-111.
[5] 郝传松, 张述伟, 李燕, 管凤宝. 低温甲醇洗富硫气深冷回收硫化氢工艺[J]. 现代化工, 2018, 38(7): 199-203.
[6] 韩淑萃, 杨金杯. 丙酸甲酯和甲醇共沸物萃取精馏分离工艺的研究[J]. 现代化工, 2018, 38(7): 214-218.
[7] 高文强, 焦纬洲, 刘有智. 超声强化苯甲醇合成苯甲醛的研究[J]. 现代化工, 2018, 38(6): 97-100.
[8] 缪平, 桑宇, 邢爱华. 纳米级ZSM-5分子筛的制备及其在甲醇制丙烯反应中的优势与劣势[J]. 现代化工, 2018, 38(5): 48-52.
[9] 张海荣, 刘红艳, 张素芳, 韩生华, 李雪梅, 陶逊, 沈腊珍, 蒋煜, 郭永. 原料硅铝比对ZSM-11分子筛性质及其甲醇转化制烯烃催化性能的影响[J]. 现代化工, 2018, 38(5): 95-98.
[10] 郑清娟, 李士雨, 杨玉敏. 焦炉煤气制甲醇工艺中循环气量的优化[J]. 现代化工, 2018, 38(5): 219-223.
[11] 郑秋闿, 范晶晶. 二氢杨梅素对聚丙烯的稳定作用[J]. 现代化工, 2018, 38(5): 116-118,120.
[12] 王玉明, 张欢欢, 白鹏, 郭翔海. 金属有机骨架材料MIL-101(Cr)在醋酸溶液中结构稳定性的研究[J]. 现代化工, 2018, 38(3): 129-132,134.
[13] 高勇, 亢玉红, 贺贝贝, 李健, 闫龙, 马亚军. 侧线精馏塔高效分离二甲醚-甲醇-水的稳态模拟与动态控制研究[J]. 现代化工, 2018, 38(3): 214-217.
[14] 黄思琦, 邓风, 张睿, 佘谱颖, 艾乐仙. 好氧颗粒污泥培养及其稳定性研究[J]. 现代化工, 2018, 38(2): 106-109.
[15] 许锐, 顾斓芳. 甲醇制烯烃装置污水汽提系统堵塞问题的研究[J]. 现代化工, 2018, 38(11): 192-195.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn