Please wait a minute...
 
最新公告: 关于寒假期间版面费发票延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (11): 97-101    DOI: 10.16606/j.cnki.issn0253-4320.2018.11.021
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
N-甲基吡咯烷酮与正丁醇液相剥离制备高浓度石墨烯
赵木, 黄国强
天津大学化工学院, 天津 300350
Preparation of high concentration graphene by liquid phase exfoliation in NMP and butyl alcohol
ZHAO Mu, HUANG Guo-qiang
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
下载:  PDF (2644KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用N-甲基吡咯烷酮(NMP)与正丁醇(NBA)二元溶剂体系液相剥离法制备石墨烯,探究高浓度、高质量石墨烯的制备条件,通过比较不同体积比溶剂对石墨的剥离效果,得出最佳剥离体积比为V(NMP)∶V(NBA)=1.5∶1。通过正交试验得到初始石墨质量浓度对剥离后石墨烯的浓度影响最大,超声功率、时间、温度次之。结果表明,初始石墨质量浓度为10 mg/mL时,制备的石墨烯80%以上为少层石墨烯,结构完整,片层大小最大可达到3~4 μm,石墨烯溶液质量浓度最高达到7.2 mg/mL。该体系制备的石墨烯产率与片层大小比以往文献的报道均有大幅度提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵木
黄国强
关键词:  石墨烯  二元溶剂  液相剥离  结构完整  高浓度    
Abstract: Graphene is prepared through liquid phase exfoliation in a binary solvent system composing of N-methyl pyrrolidone (NMP) and n-butyl alcohol (NBA) to explore the conditions of preparing high quality and high concentration graphene.Through comparing the exfoliation effects of graphite within different volumetric ratio of solvents,the optimal ratio is confirmed as V(NMP):V(NBA)=1.5:1.It is found via orthogonal experiments that the initial mass concentration of graphite has the greatest influence on the concentration of graphene after exfoliation,followed by the ultrasonic power,time and temperature.The result shows that 80% of prepared graphene are of less layer,with structural integrity and 3-4 microns in lamella size,and the mass concentration of graphene solution can reach 7.2 mg·mL-1 when the initial mass concentration of graphite is 10 mg·mL-1.The yield and lamella size of graphene prepared in this system has a significant improvement than that reported in previous literatures.
Key words:  graphene    binary solvent    liquid phase exfoliation    structural integrity    high concentration
收稿日期:  2018-03-08      修回日期:  2018-09-12          
TQ127.1  
基金资助: 国家自然科学基金(21676197)
通讯作者:  黄国强(1972-),男,博士,副教授,主要从事多晶硅精馏领域的研究、开发与工程设计以及石墨烯制备工艺研究,通讯联系人,hgq@tju.edu.cn。    E-mail:  hgq@tju.edu.cn
作者简介:  赵木(1991-),女,硕士生,主要从事石墨烯制备工艺的研究,zhaomutd@tju.edu.cn
引用本文:    
赵木, 黄国强. N-甲基吡咯烷酮与正丁醇液相剥离制备高浓度石墨烯[J]. 现代化工, 2018, 38(11): 97-101.
ZHAO Mu, HUANG Guo-qiang. Preparation of high concentration graphene by liquid phase exfoliation in NMP and butyl alcohol. Modern Chemical Industry, 2018, 38(11): 97-101.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.11.021  或          http://www.xdhg.com.cn/CN/Y2018/V38/I11/97
[1] Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
[2] Neto A H C.The electronic properties of graphene[J].Vacuum,2010,244(11):4106-4111.
[3] Bets K V,Yakobson B I.Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons[J].Nano Research,2009,2(2):161-166.
[4] Balandin A A,Ghosh S,Bao W Z.Superior thermal conductivity of single layer graphene[J].Lau Nano Lett,2008,8(3):902-907.
[5] Ponomarenko L A,Schedin F,Katsnelson M I,et al.Chaotic Dirac billiard in graphene quantum dots[J].Science,2008,320(5874):356-358.
[6] Yoo E,Kim J,Hosono E,et al.Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J].Nano Letters,2008,8(8):2277-2282.
[7] 任成,王小军,李永祥,等.石墨烯复合材料的研究及其应用[J].现代化工,2015,35(1):32-35.
[8] 唐捷,华青松,元金石,等.超级电容器中的二维材料[J].材料导报,2017,31(9):26-35.
[9] Hernandez Y,Nicolosi V,Lotya M,et al.High yield production of graphene by liquid phase exfoliation of graphite[J].Nature Nanotechnology,2008,3(9):563-568.
[10] Wei Y,Sun Z.Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene[J].Current Opinion in Colloid & Interface Science,2015,20(5-6):311-321.
[11] Hernandez Y,Lotya M,Rickard D,et al.Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery[J].Langmuir the Acs Journal of Surfaces & Colloids,2010,26(5):3208.
[12] Zhong Y L,Tian Z,Simon G P,et al.Scalable production of graphene via wet chemistry:Progress and challenges[J].Materials Today,2015,18(2):73-78.
[13] Niu L,Coleman J N,Zhang H,et al.Production of two-dimensional nanomaterials via liquid-based direct exfoliation[J].Small,2016,12(3):272-293.
[14] Arao Y,Mori F,Kubouchi M.Efficient solvent systems for improving production of few-layer graphene in liquid phase exfoliation[J].Carbon,2017,118:18-24.
[15] Chia J S Y,Tan M T T,Khiew P S,et al.A novel one step synthesis of graphene via sonochemical-assisted solvent exfoliation approach for electrochemical sensing application[J].Chemical Engineering Journal,2014,249:270-278.
[16] Chen J,Shi W,Fang D,et al.A binary solvent system for improved liquid phase exfoliation of pristine graphene materials[J].Carbon,2015,94:405-411.
[17] Posudievsky O Y,Khazieieva O A,Cherepanov V,et al.High yield of graphene by dispersant-free liquid exfoliation of mechanochemically delaminated graphite[J].Journal of Nanoparticle Research,2013,15(11):2046.
[18] Hernandez Y,Lotya M,Rickard D,et al.Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery[J].Langmuir the Acs Journal of Surfaces & Colloids,2010,26(5):3208.
[19] 彭黎琼,谢金花,郭超,等.石墨烯的表征方法[J].功能材料,2013,44(21):3055-3059.
[20] Ferrari A C,Meyer J C,Scardaci V,et al.Raman spectrum of graphene and graphene layers[J].Physical Review Letters,2006,97(18):187401.
[21] Saito R.Raman spectroscopy of graphene edges[J].Nano Letters,2009,9(4):1433-1441.
[1] 张鑫, 王永波, 王林昕, 刘恩周, 胡晓云, 樊君. 氧化石墨烯载药体系负载甲硝唑及体外释放的研究[J]. 现代化工, 2018, 38(9): 127-131.
[2] 王钊, 岳红彦, 俞泽民, 高鑫, 姚龙辉, 王宝. 化学气相沉积制备泡沫石墨烯超级电容器电极研究进展[J]. 现代化工, 2018, 38(9): 33-35,37.
[3] 张萍花, 李梦婷, 陈建钧, 王红艳, 史洪伟, 燕云洁, 姜桃. 银负载石墨烯复合材料的制备及光催化性能研究[J]. 现代化工, 2018, 38(9): 81-84,86.
[4] 郝文, 周鹏, 余昊霖, 文晓刚. SnS2纳米花/石墨烯锂离子电池负极材料合成及其电化学性能研究[J]. 现代化工, 2018, 38(8): 103-107.
[5] 蔡亭伟, 丁颖, 徐丽慧. 三维石墨烯基光催化剂的研究进展[J]. 现代化工, 2018, 38(8): 17-22.
[6] 郭琳, 陈云嫩, 刘晨, 商皓, 李畅. 硫酸铵镁沉淀法回收稀土硫酸铵废水中高浓度氨氮试验研究[J]. 现代化工, 2018, 38(8): 73-76,78.
[7] 张祎曼, 孙豫, 孙万虹, 田松. 石墨烯改性材料在气体吸附分离方面的研究进展[J]. 现代化工, 2018, 38(6): 38-42.
[8] 孙长兵, 陈思浩. 三氧化二铁和碳复合材料在锂离子电池负极中的研究新进展[J]. 现代化工, 2018, 38(6): 59-63.
[9] 许世超, 董凯, 多浩, 朱天哲, 乔阳. 基于光催化技术的VOCs空气净化器的设计及研究[J]. 现代化工, 2018, 38(6): 117-121.
[10] 黄海波, 沈勇, 杨明荣, 徐丽慧, 王黎明, 王海洋. 海胆状MnO2/RGO复合材料的制备及吸波性能研究[J]. 现代化工, 2018, 38(6): 154-157,159.
[11] 李子庆, 赫文秀, 张永强, 刘斌, 蒋梦. 两步法原位制备NiO/N-RGO复合材料及其电化学性能[J]. 现代化工, 2018, 38(3): 138-141,143.
[12] 李欣悦, 高仕谦, 董南巡, 钱飞跃, 张占恩. 磁性氧化石墨烯固相萃取-高效液相色谱质谱法测定水中的氟喹诺酮残留[J]. 现代化工, 2018, 38(3): 233-237.
[13] 李子庆, 赫文秀, 张永强, 刘斌, 蒋梦. 定向制备不同尺寸的3D掺氮石墨烯及其表征[J]. 现代化工, 2018, 38(2): 110-114.
[14] 朱海彬, 张纪梅, 范咏梅, 米超, 蔡宇玲, 张丽萍. 石墨烯复合材料在催化应用中的研究进展[J]. 现代化工, 2018, 38(2): 43-46.
[15] 赵帅, 韩娜, 丁洪生, 沈健. 金属改性石墨烯在光催化领域的研究进展[J]. 现代化工, 2018, 38(10): 67-70,72.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn