Please wait a minute...
 
最新公告: 关于寒假期间版面费发票延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (11): 44-47    DOI: 10.16606/j.cnki.issn0253-4320.2018.11.010
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
生物三维打印再生丝素蛋白材料的研究进展
王彤彤, 王卉, 张克勤
苏州大学纺织与服装工程学院, 现代丝绸国家工程实验室(苏州), 江苏 苏州 215123
Research progress in 3D bio-printing regenerated silk protein materials
WANG Tong-tong, WANG Hui, ZHANG Ke-qin
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
下载:  PDF (1314KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 介绍了近年来生物三维打印再生丝素蛋白材料的研究进展,重点阐述了喷墨生物打印技术、挤出成型生物3D打印技术以及光固化立体印刷生物打印技术打印再生丝素蛋白材料的优势和缺陷,最后对生物3D打印再生丝素蛋白材料的发展前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王彤彤
王卉
张克勤
关键词:  生物3D打印  再生丝素蛋白  组织工程    
Abstract: In this paper,the research progress in three-dimensional (3D) bio-printing regenerated silk protein materials in recent years is introduced.It focuses on describing the advantages and disadvantages of the Inkjet bio-printing technology,the extrusion bio-printing technology and the stereolithography bio-printing technology in printing the regenerated silk protein materials.Finally,the development prospect of 3D bio-printing regenerated silk protein materials is expected.
Key words:  3D bio-printing    regenerated silk protein    tissue engineering
收稿日期:  2018-04-13      修回日期:  2018-09-06          
TH3  
基金资助: 江苏省自然科学基金项目(BK20161253);南通市科技计划项目
通讯作者:  王彤彤(1993-),男,硕士生;王卉(1982-),女,副教授,研究方向为丝蛋白材料及复合生物材料,通讯联系人,whui@suda.edu.cn。    E-mail:  whui@suda.edu.cn
引用本文:    
王彤彤, 王卉, 张克勤. 生物三维打印再生丝素蛋白材料的研究进展[J]. 现代化工, 2018, 38(11): 44-47.
WANG Tong-tong, WANG Hui, ZHANG Ke-qin. Research progress in 3D bio-printing regenerated silk protein materials. Modern Chemical Industry, 2018, 38(11): 44-47.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.11.010  或          http://www.xdhg.com.cn/CN/Y2018/V38/I11/44
[1] Jeong H P,Jinah J,Jung S,et al.Three-dimensional printing of tissue/organ analogues containing living cells[J].Annals of Biomedical Engineering,2016,38(10):180-194.
[2] Tomasz J,Willi S,Kristin S,et al.Strategies and molecular design criteria for 3D printable hydrogels[J].Chem Rev,2016,116:1496-1539.
[3] Satyajit P,Vanesa Y.A review of 3D printing techniques and the future in biofabrication of bioprinted tissue[J].Cell Biochem Biophys,2016,74:93-98.
[4] Huang Y,Zhang X F,Gao G F,et al.3D bioprinting and the current applications in tissue engineering[J].Biotechnol J,2017,12:1600734.
[5] Elise D,Kristin S,Tomasz J,et al.Biofabrication of 3D constructs:Fabrication technologies and spider silk proteins as bioinks[J].Pure & Applied Chemistry,2015,87(8):737-749.
[6] Rod R J,Maria J R,Thomas A D,et al.Evolution of bioinks and additive manufacturing technologies for 3D bioprinting[J].ACS Biomater Sci Eng,2016,2:1662-1678.
[7] Monika H,Madhuri D,Donna S,et al.The bioink:A comprehensive review on bioprintable materials[J].Biotechnology Advances,2017,35(2):217-239.
[8] David C,Kimberly K L,Roland R K,et al.Advanced bioinks for 3D printing:A materials science perspective[J].Annals of Biomedical Engineering,2016,44(6):2090-2102.
[9] Nathan J C,Christoph M,Peter L,et al.Current developments in multifunctional smart materials for 3D/4D bioprinting[J].Current Opinion in Biomedical Engineering,2017,2:67-75.
[10] Acosta-Vélez G F,Linsley C S,Craig M C,et al.Photocurable bioink for the inkjet 3D pharming of hydrophilic drugs[J].Bioengineering,2017,4:11.
[11] Park J H,Jang J,Lee J S,et al.Three-dimensional printing of tissue/organ analogues containing living cells[J].Annals of Biomedical Engineering,2017,45(1):180-194.
[12] Zhang Y S,Yue K,Aleman J.3D bioprinting for tissue and organ fabrication[J].Annals of Biomedical Engineering,2017,45(1):148-163.
[13] Li J P,Chen M J,Fan X Q,et al.Recent advances in bioprinting techniques:Approaches,applications and future prospects[J].J Transl Med,2016,14:271-273.
[14] Ilze Donderwinkel,Jan C M van Hest,Neil R Cameron.Bio-inks for 3D bioprinting:Recent advances and future prospects[J].Polym Chem,2017,8:4451-4471.
[15] Chimene D,Lennox K K,Kaunas R R,et al.Advanced bioinks for 3D printing:A materials science perspective[J].Annals of Biomedical Engineering,2016,44:2090-2102.
[16] Amit P,Lay P T.Current status of bioinks for micro-extrusion-based 3D bioprinting[J].Molecules,2016,21(6):685-697.
[17] DeSimone E,Schacht K,Jungst T,et al.Biofabrication of 3D constructs:Fabrication technologies and spider silk proteins as bioinks[J].Pure & Applied Chemistry,2015,87(8):737-749.
[18] Włodarczyk-Biegun M K,Del Campo A.3D bioprinting of structural proteins[J].Biomaterials,2017,134(7):180-201.
[19] Ahsan F,Ansari T M,Usmani S,et al.An insight on silk protein sericin:From processing to biomedical application[J].Drug Res (Stuttg),2017,68(6);317-327.
[20] Shen J,Guvendiren M.Recent advances in bioink design for 3D bioprinting of tissues and organs[J].Biotechnol,2017,5:23-45.
[21] Rattanon S,Irina D,Rossella C,et al.Inkjet printing of silk nest arrays for cell hosting[J].Biomacromolecules,2014,15:1428-1435.
[22] Ashley M C,Christensen K,Huang Y.Inkjet bioprinting of 3D silk fibroin cellular constructs using sacrificial alginate[J].ACS Biomater Sci Eng,2017,3:1519-1526.
[23] Sun L,Parker S T,Syoji D,et al.Direct-write assembly of 3D silk/hydroxyapatite scaffolds for bone co-cultures[J].Advanced Healthcare Materials,2012,1(6):729-735.
[24] Sanskrita D,Pati F,Choi Y J,et al.Bioprintable,cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs[J].Acta Biomaterialia,2015,11:233-246.
[25] Schacht K,Jngst T,Schweinlin M,et al.Biofabrication of cell-loaded 3D spider silk constructs[J].Angew Chem,2015,54:2816-2820.
[26] DeSimone E,Schacht K,Pellert A,et al.Recombinant spider silk-based bioinks[J].Biofabrication,2017,9(4):044104.
[27] Pal R K,Kurland N E,Wang C Z,et al.Biopatterning of silk proteins for soft micro-optics[J].ACS Appl Mater Interfaces,2015,7:8809-8816.
[28] Kurland N E,Dey T,Kundu S C,et al.Precise patterning of silk microstructures using photolithography[J].Adv Mater,2013,25:6207-6212.
[29] Applegate M B,Partlow B P,Coburn J,et al.Photocrosslinking of silk fibroin using riboflavin for ocular prostheses[J].Adv Mater,2016,28(12):2417-2420.
[30] Matthew B Dickerson,David L Kaplan,et al.3D printing of regenerated silk fibroin and antibody-containing microstructures via multiphoton lithography[J].ACS Biomater Sci Eng,2017,3,2064-2075.
[1] 林皓, 胡家朋, 刘瑞来, 赵瑨云, 饶瑞晔. 聚乳酸接枝丙烯酸纳米孔纤维膜制备及其细胞相容性研究[J]. 现代化工, 2017, 37(6): 94-97,99.
[2] 姜晓琳, 王诗瀚. 细菌纤维素复合材料应用进展[J]. 现代化工, 2017, 37(11): 57-61.
[3] 曹成波,宋国栋,吴克安,张春联,吕荣晖,王勇. 新型胶原支架材料的制备[J]. , 2006, 26(13): 0-0.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn