Please wait a minute...
 
最新公告: 关于寒假期间版面费发票延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (7): 204-207,209    DOI: 10.16606/j.cnki.issn0253-4320.2018.07.047
  信息技术应用 本期目录 | 过刊浏览 | 高级检索 |
烃类液体黏度的定量结构性质预测模型
蔡广庆, 张霖宙
中国石油大学(北京)重质油国家重点实验室, 北京 102249
Prediction model of QSPR for hydrocarbon liquid viscosities
CAI Guang-qing, ZHANG Lin-zhou
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
下载:  PDF (2278KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 开发了结构性质关联模型(QSPR),实现了基于烃类化合物的结构特征预测黏温特性的功能。搜集了254种烃类化合物不同温度下的黏度数据,选择改进的Andrade方程来描述烃类化合物的黏温特性曲线,并通过对实验数据进行回归,获得了化合物的Andrade方程参数BT0。在此基础上,采用分子质量和15个基团作为分子的结构特征参数,建立神经网络模型预测Andrade模型参数BT0,平均相对误差分别为3.59%和1.27%。通过所预测的Andrade模型参数计算化合物的黏温性能,预测值与实验数据相比绝对平均误差为0.42 mPa·s。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡广庆
张霖宙
关键词:  QSPR  黏温特性  基团贡献法  人工神经网络    
Abstract: In this paper,a quantitative structure property relationship (QSPR) model is developed to predict the viscosity vs.temperature profile based on structural features of hydrocarbon compounds.The viscosity data sets of 254 hydrocarbon compounds at different temperatures are collected.An improved Andrade equation is chosen to describe viscosity vs.temperature curves of hydrocarbon compounds and two Andrade equation parameters (named B and T0) of compounds are obtained through regressing the experimental data.On this basis,an associated model is constructed between structural parameters of compounds and Andrade equation parameters.Molecular weights and 15 groups are served as the structure characteristic parameters of molecular to establish an artificial neural network (ANN) model to estimate Andrade model parameters B and T0 in terms of structural information of compounds.The average relative errors are 3.59% and 1.27%,respectively.The viscosity vs.temperature performances of compounds are calculated based on the predicted Andrade model parameters and the absolute mean deviation of predicted values is 0.42 mPa·s compared with experimental data.
Key words:  QSPR    viscosity vs temperature relationship    group contribution method    artificial neural network
收稿日期:  2017-12-06      修回日期:  2018-05-07           出版日期:  2018-07-20
TE622.5  
基金资助: 国家自然科学基金青年基金项目(21506254);中国石油大学(北京)科研基金(2462014YJRC020)
通讯作者:  蔡广庆(1994-),男,硕士生;张霖宙(1987-),男,副教授,研究方向为重油化学及转化规律,通讯联系人,Lzz@cup.edu.cn。    E-mail:  Lzz@cup.edu.cn
引用本文:    
蔡广庆, 张霖宙. 烃类液体黏度的定量结构性质预测模型[J]. 现代化工, 2018, 38(7): 204-207,209.
CAI Guang-qing, ZHANG Lin-zhou. Prediction model of QSPR for hydrocarbon liquid viscosities. Modern Chemical Industry, 2018, 38(7): 204-207,209.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.07.047  或          http://www.xdhg.com.cn/CN/Y2018/V38/I7/204
[1] Reid R C,Prausnitz J M,Poling B E.The properties of gases and liquids[M].New York:McGraw-Hill,1987.
[2] Korsten H.Viscosity of liquid hydrocarbons and their mixtures[J].Aiche Journal,2010,47(2):453-462.
[3] Joback K G,Reid R C.Estimation of pure-component properties from group-contributions[J].Chemical Engineering Communications,1987,57(1/2/3/4/5/6):233-243.
[4] Simon R H M.Estimation of critical properties of organic compounds by the method of group contributions[J].Aiche Journal,1956,2(3):12.
[5] Klincewicz K M,Reid R C.Estimation of critical properties with group contribution methods[J].Aiche Journal,1984,30(1):137-142.
[6] Lyman,Warren J.Handbook of chemical property estimation methods:Environmental behavior of organic compounds[M].Washington:American Chemical Society (ACS),1990.
[7] Velzen D V,Cardozo R L,Langenkamp H.A liquid viscosity-temperature-chemical constitution relation for organic compounds[J].Ind Eng Chem Fundamen,1972,11(1):20-25.
[8] Allan J M,Teja A S.Correlation and prediction of the viscosity of defined and undefined hydrocarbon liquids[J].Canadian Journal of Chemical Engineering,2010,69(4):986-991.
[9] Suzuki T,Ohtaguchi K,Koide K.Computer-assisted approach to develop a new prediction method of liquid viscosity of organic compounds[J].Computers & Chemical Engineering,1996,20(2):161-173.
[10] Rajappan R,Shingade P D,Natarajan R,et al.Quantitative structure-property relationship (QSPR) prediction of liquid viscosities of pure organic compounds employing random forest regression[J].Industrial & Engineering Chemistry Research,2009,48(21):9708-9712.
[11] Kauffman G W,Jurs P C.ChemInform Abstract:Prediction of surface tension,viscosity,and thermal conductivity for common organic solvents using quantitative structure-property relationships[J].Cheminform,2001,32(22):348-354.
[12] American Petroleum Institute (API).Technical data book,petroleum refining[M].Washington:API,1976.
[13] 安谧,曹青,马晨菲,等.全二维气相色谱在重馏分油分析中的应用[J].现代化工,2015,35(2):172-175.
[14] 刘美,赵锁奇,杨影影.重质油分子组成和结构的质谱分析方法进展[J].现代化工,2013,33(6):140-142.
[15] Akimitsu Murata,Katsumi Tochigi,Hiroshi Yamamoto.Prediction of the liquid viscosities of pure components and mixtures using neural network and ASOG group contribution methods[J].Molecular Simulation,2004,30(7):451-457.
[16] 王志奎.人工神经网络在化学工程中的应用[J].现代化工,1996,(9):17-21.
[1] 季一辉, 王建华, 李外, 闫丽丽, 李建男, 赵雄虎. 油基钻井液用提切剂的研制及性能评价[J]. 现代化工, 2014, 34(7): 100-102,104.
[2] RI Son-il,侯德刚,张振家,周伟丽,迟莉娜,Won-il. 基于BP人工神经网络的生化处理水水质预测[J]. , 2009, 29(12): 0-0.
[3] 黄小葳 霍清. 神经网络技术在双水相分离提取甘草酸盐中的应用[J]. , 2004, 24(13): 0-0.
[4] 葛建华王迎军 郑裕东. 人工神经网络在材料科学与加工中的应用[J]. , 2003, 23(1): 0-0.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn