Please wait a minute...
 
最新公告: 关于寒假期间版面费发票延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (7): 180-182    DOI: 10.16606/j.cnki.issn0253-4320.2018.07.041
  工艺与设备 本期目录 | 过刊浏览 | 高级检索 |
降低BTEX排放的甘醇溶剂优选
单永康1, 蒋洪1, 何光芒2
1. 西南石油大学石油与天然气工程学院, 四川 成都 610500;
2. 塔里木油田公司库车油气开发部克深作业区, 新疆 库尔勒 841000
Optimization of glycol solvent to reduce BTEX emission
SHAN Yong-kang1, JIANG Hong1, HE Guang-mang2
1. College of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China;
2. Kuqa Oil and Gas Development Department, PetroChina Tarim Oilfield Company, Kuerle 841000, China
下载:  PDF (1446KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用常规甘醇脱水工艺,通过重沸器负荷、甘醇损失、BTEX排放量对3种甘醇的性能进行分析比较后得出,当甘醇循环量达到4 m3/h时,DEG、EG溶剂脱水重沸器负荷较低,BTEX排放量降低90%以上,但甘醇损失量较大,可通过对其进行回收利用以降低甘醇损失。最后得出,当天然气富含BTEX时,可通过使用DEG、EG替代TEG,解决再生气BTEX排放量超标的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
单永康
蒋洪
何光芒
关键词:  BTEX  甘醇溶剂  排放量  再生废气    
Abstract: By means of conventional glycol dehydration process,the performances of three kinds of glycols (diethylene glycol,monoethylene glycol and triethylene glycol,i.e.DEG,MEG and TEG) are analyzed and compared through evaluating the reboiler load,the loss of glycol and the emission of benzene,toluene,ethylbenzene and xylenes (BTEX).It is found that the loads of dehydration reboiler for DEG and EG are low,the BTEX emission is reduced by more than 90% but the loss amount of glycol is large when the glycol circulation reaches 4 m3·h-1.The loss of glycol can be reduced by recycling glycol.Finally,it is concluded that TEG can be replaced by DEG and EG to solve the problem of excessive emission of BTEX in the regenerated gas when natural gas contains high contents of BTEX.
Key words:  BTEX    glycol solvent    emission amount    regenerated gas
收稿日期:  2017-12-21                出版日期:  2018-07-20
TE644  
通讯作者:  单永康(1993-),男,硕士生,主要从事天然气处理方向研究,通讯联系人,syk0122@163.com。    E-mail:  syk0122@163.com
引用本文:    
单永康, 蒋洪, 何光芒. 降低BTEX排放的甘醇溶剂优选[J]. 现代化工, 2018, 38(7): 180-182.
SHAN Yong-kang, JIANG Hong, HE Guang-mang. Optimization of glycol solvent to reduce BTEX emission. Modern Chemical Industry, 2018, 38(7): 180-182.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.07.041  或          http://www.xdhg.com.cn/CN/Y2018/V38/I7/180
[1] 王倩.天然气脱水技术现状[J].上海化工,2015,(4):29-31.
[2] 罗小军,刘晓天,万书华.分子筛吸附法在高酸性天然气脱水中的应用[J].石油与天然气化工,2007,36(2):118-123.
[3] 高莉,蒋洪.三甘醇脱水中再生废气的回收利用[J].油气田地面工程,2017,36(7):47-50.
[4] 诸林.天然气加工工程[M].北京:石油工业出版社,2008.
[5] 仇登可.三甘醇脱水技术在煤制天然气中影响因素的研究[J].辽宁化工,2016,(9):1194-1197.
[6] Pearce R L,Protz J E,Lyon G W.Dry gas to low dew points[J].Hydrocarbon Processing,1972,51(12):79-81.
[7] 王开岳.甘醇脱水中的芳烃排放及控制措施[J].油气田地面工程,1997,(5):21-24.
[8] Eldemerdash U,Kamarudin K.Assessment of new and improved solvent for pre-elimination of BTEX emissions in glycol dehydration processes[J].Chemical Engineering Research & Design,2016,115:214-220.
[9] Braek A M,Almehaideb R A,Darwish N,et al.Optimization of process parameters for glycol unit to mitigate the emission of BTEX/VOCs[J].Process Safety & Environmental Protection,2001,79(4):218-232.
[10] 刘佳,邓道明,何思宏.影响TEG脱水装置BTEX排放的工艺因素分析[J].现代化工,2015,35(8):160-164.
[11] 陈赓良.天然气三甘醇脱水工艺的技术进展[J].石油与天然气化工,2015,44(6):1-9.
[12] Covington K,Lyddon L,Ebeling H.Reduce emissions and operating costs with appropriate glycol selection[A].77th Annual Convention of the Gas-Processors-Association[C].DALLAS TX,1998.
[13] 贺三,刘阳,樊林华,等.DRIZO脱水工艺模拟分析[J].天然气与石油,2016,34(1):44-48.
[14] 郝蕴.三甘醇脱水工艺探讨[J].中国海上油气,2001,13(3):22-29.
[15] Saidi M,Parhoudeh M,Rahimpour M R.Mitigation of BTEX emission from gas dehydration unit by application of Drizo process:A case study in Farashband gas processing plant;Iran[J].Journal of Natural Gas Science & Engineering,2014,19(7):32-45.
[1] 夏慧, 陈荣, 叶青, 冯申尧, 陈景行, 刘通, 吴卫忠. 基于自热回收技术的新型节能变压精馏过程在共沸物分离中的应用[J]. 现代化工, 2018, 38(4): 193-196,198.
[2] 贾润中, 李明骏, 朱亮, 邹兵, 朱胜杰, 高少华, 胡绪尧. OP-FTIR技术在评估炼化装置VOCs排放量中的应用研究[J]. 现代化工, 2017, 37(10): 177-180.
[3] 刘佳, 邓道明, 何思宏. 影响TEG脱水装置BTEX排放的工艺因素分析[J]. 现代化工, 2015, 35(8): 160-164.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn