Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (7): 31-35    DOI: 10.16606/j.cnki.issn0253-4320.2018.07.007
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
介质阻挡等离子体制备臭氧研究进展
王保伟, 姚淑美, 彭叶平
天津大学化工学院绿色合成与转化教育部重点实验室, 天津 300072
Progress on preparation of ozone by dielectric barrier plasma
WANG Bao-wei, YAO Shu-mei, PENG Ye-ping
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
下载:  PDF (3582KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 从电极布置与形式、原料气体、电介质及填料3个方面阐述了国内外介质阻挡放电(DBD)等离子体产生臭氧的研究进展,分析了各因素对臭氧产生的影响,指出合理布置电极,同时充分利用催化剂填料与等离子体的协同作用,可提高氧气的转化率、臭氧浓度和能量效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王保伟
姚淑美
彭叶平
关键词:  臭氧  介质阻挡放电  等离子体  催化剂    
Abstract: The research progresses on production of ozone by dielectric barrier discharge (DBD) plasma at home and abroad are introduced from three aspects such as forms and arrangements of electrodes,feed gases,and dielectric barriers and packed materials.The effects of various factors on the generation of ozone are analyzed.It is indicated that arranging electrodes reasonably and making full use of the synergistic effects of catalysts and packing materials with plasma can increase the conversion rate of oxygen,the ozone concentration and the energy efficiency.
Key words:  ozone    dielectric barrier discharge    plasma    catalyst
收稿日期:  2017-11-20      修回日期:  2018-05-02           出版日期:  2018-07-20
TM512  
基金资助: 国家重点研发计划(2016YFB0600701)
通讯作者:  王保伟(1971-),男,博士,副教授,研究方向为等离子体化工、能源与环境化工、一碳化工,通讯联系人,wangbw@tju.edu.cn。    E-mail:  wangbw@tju.edu.cn
引用本文:    
王保伟, 姚淑美, 彭叶平. 介质阻挡等离子体制备臭氧研究进展[J]. 现代化工, 2018, 38(7): 31-35.
WANG Bao-wei, YAO Shu-mei, PENG Ye-ping. Progress on preparation of ozone by dielectric barrier plasma. Modern Chemical Industry, 2018, 38(7): 31-35.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.07.007  或          http://www.xdhg.com.cn/CN/Y2018/V38/I7/31
[1] 杨春,胡兆吉,魏林生.放电等离子体臭氧发生技术研究现状与进展[J].高压电器,2010,46(9):78-85.
[2] 商克峰,曹晓萌,王肖静,等.高压电极构型对DBD装置放电特性及臭氧生成的影响[J].高电压技术,2016,42(5):1394-1400.
[3] Andreev V V,Pichugin Y P,Telegin V G,et al.Combined barrier discharge in atmospheric-pressure air[J].Plasma Physics Reports,2012,38(13):1046-1049.
[4] Chebbah A,Hadjeri S,Nemmich S,et al.Development and experimental analysis of a new "serpentine-shape" surface-DBD ozone generator-comparison with a cylindrical volume-DBD ozone generator[J].Ozone Science & Engineering,2017,39(3):209-216.
[5] Pekárek S.Asymmetric properties and ozone production of surface dielectric barrier discharge with different electrode configurations[J].The European Physical Journal D,2013,67(5):1-7.
[6] Malik A M,Schoenbach K H,Heller R.Coupled surface dielectric barrier discharge reactor-ozone synthesis and nitric oxide conversion from air[J].Chemical Engineering Journal,2014,256(256):222-229.
[7] Nassour K,Brahami M,Nemmich S,et al.New hybrid surface-volume dielectric barrier discharge reactor for ozone generation[J].IEEE Transactions on Industry Applications,2017,53(13):2477-2484.
[8] Jodpimai S,Boonduang S,Limsuwan P.Dielectric barrier discharge ozone generator using aluminum granules electrodes[J].Journal of Electrostatics,2015,74:108-114.
[9] Gnapowski S,Yamabe C,Ihara S.Ozone generation characteristics of ozonizer with the rotating type electrode[J].IEEJ Transactions on Fundamentals & Materials,2008,128(10):619-623.
[10] Fujishima T,Kawaguchii T,Amano T,et al.Ozone generation properties of screw-type electrode ozonizer by divided outer electrodes[C]//3rd International Conference on Electric and Electronics,2013:311-314.
[11] Chen H L,Lee H M,Chen S H,et al.Influence of Ar addition on ozone generation in nonthermal plasmas[J].Plasma Sources Science & Technology,2010,19(6):692-701.
[12] 魏林生.等离子体臭氧产生的实验与理论研究[D].杭州:浙江大学,2008.
[13] Wei L S,Yuan D K,Zhang Y F,et al.The effect of inert gases on ozone generation using dielectric barrier discharge in dry air[J].Ozone Science & Engineering,2013,35(6):448-455.
[14] Zhang X M,Lee B J,Hong G I,et al.Ozone production with dielectric barrier discharge:Effects of power source and humidity[J].IEEE Transactions on Plasma Science,2016,44(10):2288-2296.
[15] Wei L S,Dong G P,Zhang Y F,et al.Effect of SF6 on ozone generation using dielectric barrier discharge[J].High Voltage Engineering,2013,39(10):2520-2525.
[16] Osawa N,Tsuji T,Ogiso R,et al.Effect of nitrogen addition to ozone generation characteristics by diffuse and filamentary dielectric barrier discharges at atmospheric pressure[J].European Physical Journal Applied Physics,2017,78(2):20804.
[17] Zosimov A V,Lunin V V,Samoilovich V G,et al.Nonstationary effects in ozone generation by barrier discharges in N2/O2 mixtures[J].Russian Journal of Physical Chemistry A,2016,90(8):1687-1692.
[18] Wei L S,Yuan D K,Zhang Y F,et al.An analysis of the effect of inert gases on ozone generation using dielectric barrier discharge in oxygen[J].The European Physical Journal D,2014,68(1):1-7.
[19] Naovaratpong S,Boonyaroonate I,Nathakaranakule A.Plasma density control in a dielectric barrier discharge (DBD) ozone generator using a laser engraved dielectric layer and alumina sand filled discharge channel[J].Lasers in Engineering,2014,28:189-200.
[20] 周立福,杨学昌,陈波,等.臭氧发生器用高介电硅橡胶复合材料特性及试验分析[J].高电压技术,2010,36(5):1258-1263.
[21] 陈波,杨学昌,陶顺忠.等离子喷涂介质层提升臭氧发生器性能的试验研究[J].高电压技术,2013,(7):1703-1709.
[22] Dwivedi C,Toley M A,Dey G R,et al.Ozone generation from argon-oxygen mixtures in presence of different packing materials within dielectric barrier discharge gap[J].Ozone Science & Engineering,2013,35(2):134-145.
[23] Huang W D,Ren T T,Xia W D.Ozone generation by hybrid discharge combined with catalysis[J].Ozone Science & Engineering,2007,29(2):107-112.
[24] 王健.催化剂耦合介质阻挡放电制取臭氧的试验和模型研究[D].合肥:中国科学技术大学,2009.
[25] Pekárek S.Experimental study of surface dielectric barrier discharge in air and its ozone production[J].Journal of Physics D Applied Physics,2012,45(7):075201.
[26] Pekárek S,Mikeš J,Beshajová Pelikánová I,et al.Effect of TiO2 on various regions of active electrode on surface dielectric barrier discharge in air[J].Plasma Chemistry & Plasma Processing,2016,36(5):1187-1200.
[27] Pekárek S,Mikeš J,Krýsa J.Comparative study of TiO2 and ZnO photocatalysts for the enhancement of ozone generation by surface dielectric barrier discharge in air[J].Applied Catalysis A General,2015,502:122-128.
[1] 陈川, 薛叙明. α-蒎烯固定床加氢制顺式蒎烷[J]. 现代化工, 2018, 38(9): 110-112,114.
[2] 黄水望, 钟晶洁, 杨宝良, 张小露. 连续重整待生催化剂碳含量异常原因分析[J]. 现代化工, 2018, 38(9): 192-194.
[3] 杨凌, 申涛, 宋云华, 刘璐. 定-转子除尘技术在FCC喷雾尾气除尘上的应用研究[J]. 现代化工, 2018, 38(9): 198-201.
[4] 金兆荣, 侯峰, 徐宏. 基于Aspen Plus的热等离子体气化含油污泥的模拟研究[J]. 现代化工, 2018, 38(9): 224-228.
[5] 杨凤丽, 仝雪, 秦丽珍, 郑纯智, 夏斐斐. 铌类固体酸催化糖转化5-羟甲基糠醛研究进展[J]. 现代化工, 2018, 38(9): 28-32.
[6] 刘凯, 田原宇, 张君涛. 萘选择性催化加氢催化剂研究进展[J]. 现代化工, 2018, 38(9): 45-49.
[7] 杨涛, 戴鑫, 杨天华, 李伟, 黄传峰, 韩智发, 石欣, 王蒙. 煤焦油重组分加氢技术现状及研究趋势探讨[J]. 现代化工, 2018, 38(9): 60-63,65.
[8] 蔡亭伟, 丁颖, 徐丽慧. 三维石墨烯基光催化剂的研究进展[J]. 现代化工, 2018, 38(8): 17-22.
[9] 王旭浩, 陈明功, 刘静茹, 汪智伟, 荣俊锋, 蔡传根. 低温等离子体技术净化有机废水研究现状及进展[J]. 现代化工, 2018, 38(8): 23-27,29.
[10] 任健, 李大鹏, 王宁波, 王永娟, 姚晓虹, 王维, 杨帆, 党昱. 基于C1化学的低碳烯烃合成技术研究进展[J]. 现代化工, 2018, 38(8): 58-62.
[11] 俞海淼, 刘阳, 武子璐. 生物质三组分催化气化后焦油析出特性研究[J]. 现代化工, 2018, 38(8): 90-93.
[12] 李雪伟, 张春桃, 梁文懂, 王海蓉, 毛磊. 类Fenton反应催化剂的制备及其处理废切削液的研究[J]. 现代化工, 2018, 38(8): 94-98.
[13] 段玉梅, 郑长征, 李亚斐, 丁羽佳, 张兴. Ni改性Cu-Fe基催化剂的制备及其在CO加氢制低碳醇中的性能研究[J]. 现代化工, 2018, 38(8): 139-142,144.
[14] 王艺, 陈爽, 刘涛, 赵素娜. 超声-非均相Fenton法处理丙烯腈废水的工艺及机理[J]. 现代化工, 2018, 38(8): 147-151.
[15] 韩晓霞, 赵超凡. 神经网络及遗传算法在催化剂设计中的应用[J]. 现代化工, 2018, 38(8): 213-216.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn