Please wait a minute...
 
最新公告: 关于寒假期间版面费发票延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (6): 117-121    DOI: 10.16606/j.cnki.issn0253-4320.2018.06.027
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
基于光催化技术的VOCs空气净化器的设计及研究
许世超, 董凯, 多浩, 朱天哲, 乔阳
天津工业大学环境与化学工程学院, 天津 300387
Design and research of VOCs-containing air purifier based on photocatalytic technology
XU Shi-chao, DONG Kai, DUO Hao, ZHU Tian-zhe, QIAO Yang
School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
下载:  PDF (3447KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以石墨为原料制备了氧化石墨烯(GO),采用水热法制备了二氧化钛-石墨烯(TiO2-rGO)纳米复合材料。利用红外光谱、X射线衍射、透射电镜、拉曼光谱、电化学阻抗谱对合成产物进行了表征。以TiO2-rGO为光催化剂设计组装了光催化空气净化器,考察了净化器对苯、甲苯和二甲苯的光催化降解性能。结果表明,石墨烯的添加使得净化器具有较高的光催化活性,100 min后,对苯、甲苯和二甲苯的降解率高达90%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许世超
董凯
多浩
朱天哲
乔阳
关键词:  氧化石墨烯  二氧化钛  光催化  空气净化器    
Abstract: Grapheme oxides (GO) are prepared by using graphite as raw material.Then TiO2-GO nanocomposites are prepared by hydrothermal method and characterized by FT-IR,XRD,TEM,RAMAN and EIS.The photocatalytic air purifier is designed and assembled by using TiO2-GO as photocatalyst and its photocatalytic performance is evaluated in the degradation of benzene,toluene and xylene.The results show that the addition of GO has enhanced the photocatalytic activity of purifier.After 100 minutes,the degradation rates of benzene,toluene and xylene all reach as high as 90%.
Key words:  grapheme oxide    TiO2    photocatalytic    air purifier
收稿日期:  2017-11-03      修回日期:  2018-04-09           出版日期:  2018-06-20
X511  
基金资助: 天津市自然科学基金(12JCZDJC22300,13JCQNJC02600);天津市外专局项目基金(Y2012061)
通讯作者:  许世超(1975-),男,博士,副教授,硕士生导师,研究方向为VOCs光催化降解与传感器研究,通讯联系人,xushichao@tjpu.edu.cn。    E-mail:  xushichao@tjpu.edu.cn
引用本文:    
许世超, 董凯, 多浩, 朱天哲, 乔阳. 基于光催化技术的VOCs空气净化器的设计及研究[J]. 现代化工, 2018, 38(6): 117-121.
XU Shi-chao, DONG Kai, DUO Hao, ZHU Tian-zhe, QIAO Yang. Design and research of VOCs-containing air purifier based on photocatalytic technology. Modern Chemical Industry, 2018, 38(6): 117-121.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.06.027  或          http://www.xdhg.com.cn/CN/Y2018/V38/I6/117
[1] 先庭,杨建荣,王欣.室内空气品质研究现状与发展[J].暖通空调,2000,3(3):36-40.
[2] 朱迪迪,戴海夏,钱华.我国室内空气污染现状调研与分析[J].上海环境科学,2010,(4):174-180.
[3] Du Z,Mo J,Zhang Y,et al.Benzene,toluene and xylenes in newly renovated homes and associated health risk in Guangzhou,China[J].Build Environ,2014,72(2):75-81.
[4] Wolkoff P,Nielsen G D.Organic compounds in indoor air-their relevance for perceived indoor air quality?[J].Atmos Environ,2001,35(26):4407-4417.
[5] Zhu J,Newhook R,Marro L,et al.Selected volatile organic compounds in residential air in the city of Ottawa,Canada[J].Environ Sci Technol,2005,39(11):3964-3971.
[6] Ohura T,Amagai T,Shen X,et al.Comparative study on indoor air quality in Japan and China:Characteristics of residential indoor and outdoor VOCs[J].Atmos Environ,2009,43(40):6352-6359.
[7] Hoffman M R,Martin S T,Choi W,et al.Environmental applications of semiconductor photocatalysis[J].Chem Rev,1995,95(1):69-96.
[8] Fujishima A,Zhang X.Titanium dioxide photocatalysis:Present situation and future approaches[J].C R Chim,2006,9(5-6):750-760.
[9] He F,Li J,Li T,et al.Solvothermal synthesis of mesoporous TiO2:The effect of morphology,size and calcination progress on photocatalytic activity in the degradation of gaseous benzene[J].Chemical Engineering Journal,2014,237(237):312-321.
[10] Nakataa K,Fujishima A.TiO2 photocatalysis:Design and applications[J].Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2012,13(3):169-189.
[11] Hummers W S,Offeman R E.Preparation of graphitic oxide[J].J Am Chem Soc,1958,80(6):1339.
[12] Zhang H,Lv X,Li Y,et al.P25-graphene composite as a high performance photocatalyst[J].ACS Nano,2010,4(1):380-386.
[13] Shah M S A S,Park A R,Zhang K,et al.Green synthesis of biphasic TiO2-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity[J].ACS Applied Materials & Interfaces,2012,4(8):3893-3901.
[14] Shi Q,Zhao W,Xie L,et al.Enhanced visible-light driven photocatalytic mineralization of indoor toluene via a BiVO4/reduced graphene oxide/Bi2O3 all-solid-state Z-scheme system[J].Journal of Alloys & Compounds,2016,662:108-117.
[15] Yadav H M,Kim J S.Solvothermal synthesis of anatase TiO2-graphene oxide nanocomposites and their photocatalytic performance[J].J Alloys Compd,2016,688:123-129.
[16] Liang D,Cui C,Hu H,et al.One-step hydrothermal synthesis of anatase TiO2/reduced graphene oxide nanocomposites with enhanced photocatalytic activity[J].J Alloys Compd,2014,582(1):236-240.
[17] Zhang Y,Zhang N,Tang Z R,et al.Improving the photocatalytic performance of graphene-TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact[J].Chem Phys,2012,14(25):9167-9175.
[18] Wu H,Fan J,Liu E,et al.Facile hydrothermal synthesis of TiO2 nanospindles-reduced graphene oxide composite with a enhanced photocatalytic activity[J].J Alloys Compd,2015,623:298-303.
[19] Wang Y,Shi R,Lin J,et al.Significant photocatalytic enhancement in methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in situ hybridization[J].Applied Catalysis B:Environmental,2010,100(1):179-183.
[20] Akhavan O,Abdolahad M,Esfandiar A,et al.Photodegradation of grapheme oxide sheets by TiO2 nanoparticles after a photocatalytic reduction[J].The Journal of Physical Chemistry C,2010,114(30):12955-12959.
[20] Kamat P V.Graphene-based nanoassemblies for energy conversion[J].J Phys Chem Lett,2011,2(3):242-251.
[21] Zhang Y,Tang Z R,Fu X,et al.TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant:Is TiO2-graphene truly different from other TiO2-carbon composite materials?[J].ACS Nano,2010,4(12):7303-7310.
[22] Teoh W Y,Scott J A,Amal R.Progress in heterogeneous photocatalysis:From classical radical chemistry to engineering nanomaterials and solar reactors[J].Phys Chem Lett,2012,3:629-639.
[1] 张鑫, 王永波, 王林昕, 刘恩周, 胡晓云, 樊君. 氧化石墨烯载药体系负载甲硝唑及体外释放的研究[J]. 现代化工, 2018, 38(9): 127-131.
[2] 姜巧娟, 李华, 刘彦平, 郑先君, 付长亮, 刘从军. Pt/TiO2的制备及其在利用废水中有机酸产氢中的性能研究[J]. 现代化工, 2018, 38(9): 160-163.
[3] 张萍花, 李梦婷, 陈建钧, 王红艳, 史洪伟, 燕云洁, 姜桃. 银负载石墨烯复合材料的制备及光催化性能研究[J]. 现代化工, 2018, 38(9): 81-84,86.
[4] 陈昕海, 陈星, 李廷真. Nd-Er/ZnO-TiO2光催化剂对2,4-DCP的光催化降解研究[J]. 现代化工, 2018, 38(8): 152-156.
[5] 牛凤兴, 陈晨, 陈钰, 高晓明. 水热法制备Co/ZnO及其光催化降解邻苯二酚的研究[J]. 现代化工, 2018, 38(8): 99-102,104.
[6] 蔡亭伟, 丁颖, 徐丽慧. 三维石墨烯基光催化剂的研究进展[J]. 现代化工, 2018, 38(8): 17-22.
[7] 于露, 翟宏菊, 关壬铨, 常立民, 吴佳珆. 银基复合材料光催化性能研究新进展[J]. 现代化工, 2018, 38(7): 40-43.
[8] 代岩, 王硕, 田黎明, 肖武. FePc-TiO2/CS复合材料制备及光催化降解染料废水[J]. 现代化工, 2018, 38(7): 89-92.
[9] 赵帅, 刘亚亚, 马博文, 沈健. TiO2-β/SBA-15复合分子筛光催化氧化脱硫[J]. 现代化工, 2018, 38(7): 145-149.
[10] 赵艳艳, 梁旭华, 邓寒霜, 李筱玲. g-C3N4光催化材料的制备及降解水中头孢曲松钠[J]. 现代化工, 2018, 38(6): 128-132.
[11] 黄晶, 景红霞, 王星梅, 李娜, 焦纬洲. 多元复合纳米TiO2光催化性能研究进展[J]. 现代化工, 2018, 38(5): 24-28.
[12] 张轩, 郭斌, 孙嘉祺, 解启航. 光催化处理挥发性有机物研究进展[J]. 现代化工, 2018, 38(5): 20-23,25.
[13] 万燕, 魏任星, 卢挺, 魏顺安, 季金苟, 谢方奎. 二氧化钛多相光催化降解有机污染物影响因素研究进展[J]. 现代化工, 2018, 38(5): 53-56,58.
[14] 顾益飞, 王黎明, 沈勇, 徐丽慧, 孙洁. La-Gd共掺ZnO纳米棒的性能及其应用研究[J]. 现代化工, 2018, 38(4): 139-143.
[15] 王露, 陈王觅, 衣守志. 纳米隔热保温涂料的制备与性能研究[J]. 现代化工, 2018, 38(4): 165-168.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn