Please wait a minute...
 
最新公告: 关于寒假期间版面费发票延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (5): 95-98    DOI: 10.16606/j.cnki.issn0253-4320.2018.05.021
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
原料硅铝比对ZSM-11分子筛性质及其甲醇转化制烯烃催化性能的影响
张海荣1, 刘红艳1, 张素芳1, 韩生华1, 李雪梅1, 陶逊2, 沈腊珍1, 蒋煜2, 郭永1
1. 山西大同大学, 山西 大同 037009;
2. 大同煤矿集团有限责任公司, 山西 大同 037003
Effects of SiO2/Al2O3 ratio on properties of ZSM-11 and its catalytic performance in MTO
ZHANG Hai-rong1, LIU Hong-yan1, ZHANG Su-fang1, HAN Sheng-hua1, LI Xue-mei1, TAO Xun2, SHEN La-zhen1, JIANG Yu2, GUO Yong1
1. Datong University, Datong 037009, China;
2. Datong Coal Mine Group Co., Ltd., Datong 037003, China
下载:  PDF (3782KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 固定晶化条件和合成原料参数,在SiO2-Al2O3-TBA+-H2O体系中,分别以四丁基氢氧化铵为模板剂、硫酸铝为铝源、正硅酸乙酯为硅源,考察了原料硅铝摩尔比对合成ZSM-11分子筛理化性能的影响。结果表明,随着原料硅铝摩尔比的增大,I501/I200[(501)和(200)晶面衍射峰的强度]的比值增大。原料硅铝摩尔比影响ZSM-11分子筛的晶粒大小和晶体形状。原料硅铝摩尔比为200时,合成ZSM-11分子筛的比表面积(453.9)和孔容(0.163 5)最大,介孔表面积占总表面积的40%,该催化剂的甲醇转化率为99.8%,丙烯收率为47%,P/E比值为5.84。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张海荣
刘红艳
张素芳
韩生华
李雪梅
陶逊
沈腊珍
蒋煜
郭永
关键词:  ZSM-11  硅铝摩尔比  甲醇  丙烯  乙烯    
Abstract: Under fixed crystallization conditions and raw material parameters,the effect of SiO2/Al2O3 ratio on the physicochemical properties of synthesized ZSM-11 molecular sieve and its catalytic performance are investigated in SiO2-Al2O3-TBA+-H2O system through using tetrabutylammonium hydroxide,aluminium sulfate and ethyl silicate as template agent,aluminum source and silica source,respectively.It is found that the ratio of the (501) and (200) crystal plane diffraction peak intensity I501 to I200 increases with the increase of Si/Al ratio.Moreover,the SiO2/Al2O3 ratio affects the crystal size and morphology of the synthesized ZSM-11 molecular sieve.When the SiO2/Al2O3 ratio equals to 200,the prepared ZSM-11 molecular sieve has the biggest specific surface and pore volume,453.9 and 0.163 5 respectively,and its mesoporous surface area accounts for 40% of its total surface area.When this molecular sieve serves the MTO process,the conversion rate of methanol can reach 99.8%,the yield of propylene can be 47% and the yield ratio between propylene and ethylene is 5.84.
Key words:  ZSM-11    ratio of SiO2/Al2O3    methanol    propylene    ethylene
收稿日期:  2018-01-18      修回日期:  2018-03-13           出版日期:  2018-05-20
O643.36  
基金资助: 国家自然科学基金项目(51303098,21477069,21506120);大同市科技攻关项目(2015021);大同大学博士启动经费资助项目(QD201049);大同大学校大学生创新创业训练项目(XDC2017257)
通讯作者:  张海荣(1978-),男,博士,副教授,主要从事多孔无机功能材料的开发及应用研究,通讯联系人,zhengmingzhang16888@126.com。    E-mail:  zhengmingzhang16888@126.com
引用本文:    
张海荣, 刘红艳, 张素芳, 韩生华, 李雪梅, 陶逊, 沈腊珍, 蒋煜, 郭永. 原料硅铝比对ZSM-11分子筛性质及其甲醇转化制烯烃催化性能的影响[J]. 现代化工, 2018, 38(5): 95-98.
ZHANG Hai-rong, LIU Hong-yan, ZHANG Su-fang, HAN Sheng-hua, LI Xue-mei, TAO Xun, SHEN La-zhen, JIANG Yu, GUO Yong. Effects of SiO2/Al2O3 ratio on properties of ZSM-11 and its catalytic performance in MTO. Modern Chemical Industry, 2018, 38(5): 95-98.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.05.021  或          http://www.xdhg.com.cn/CN/Y2018/V38/I5/95
[1] Agudamu,Sun Y,Zhang F,et al.Product distribution of methanol to propylene reaction found in Shenhua Ningxia Coal Group[J].Coal Chemistry Industry (in Chinese),2013,164(1):58-60.
[2] Hack M,Koss U,K nig P,et al.Method for producing propylene from methanol:US,7015369[P].2001-03-21.
[3] 温鹏宇,梅长松,刘红星,等.ZSM-5硅铝比对甲醇制丙烯反应产物的影响[J].化学反应工程与工艺,2007,23(5):385-390.
[4] AI-Jarallah A M,EI-Nafaty U A,Abdillahi M M,et al.Effects of metal impregnation on the activity selectivity and deactivation of a high silica MFI zeolite[J].Applied Catalysis A:General,1997,154(1):117-127.
[5] Firoozi M,Baghalha M,Asadi M.The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction[J].Catalysis Communications,2009,10(12):1582-1585.
[6] Hu S,Shan J,Zhang Q,et al.Selective formation of propylene from methanol over high-silica nanosheets of MFI zeolite[J].Applied Catalysis A General,2012,s445-446(s445-446):215-220.
[7] Védrine J C,Auroux A,Dejaifve P,et al.Catalytic and physical properties of phosphorus-modified ZSM-5 zeolite[J].Journal of Catalysis,1882,73(1):147-160.
[8] Al-Jarallah A M,El-Nafaty U A,Abdillahi M M.Effect of metal impregnation on the activity,selectivity and deactivation of a high silica MFI zeolites when converting methanol to light alkenes[J].Applied Catalysis A General,1997,154(1):117-127.
[9] Zhao T S,Takemoto T,Tsubaki N.Direct synthesis of propylene and light olefins from dimethyl ether catalyzed by modified H-ZSM-5[J].Catalysis Communications,2006,7(9):647-650.
[10] Zhao T S,Takemoto T,Yoneyama Y,et al.Selective conversion of dimethyl ether to propylene and light olefins over modified H-ZSM-5[J].Chemistry Letters,2005,34(7):970-971.
[11] Zhang H,Ning Z,Shang J,et al.A durable and highly selective PbO/HZSM-5 catalyst for methanol to propylene (MTP) conversion[J].Microporous and Mesoporous Materials,2017,248(11):173-178.
[12] Zhang H R,Ning Z X,Liu H Y,et al.Bi2O3 modification of HZSM-5 for methanol-to-propylene conversion:Evidence of olefin-based cycle[J].RSC Advances,2017,7(27):16602-16607.
[13] Olson D H,Kokotailo G T,Lawton S L,et al.Crystal structure and structure-related properties of ZSM-5[J].The Journal of Physical Chemistry,1981,85(15):2238-2243.
[14] Kokotailo G T,Chu P,Lawton S L,et al.Synthesis and structure of synthetic zeolite ZSM-11[J].Nature,1978,275(5676):119-120.
[15] Liu X Y,Su W H,Wang Y F,et al.Transformation of ZSM-5 zeolite to ZSM-11 zeolite under high pressure[J].Journal of the Chemical Society Chemical Communications,1992,12(12):902-903.
[16] 陈文祥,李金芝.不同硅铝比的ZSM-11沸石分子筛的催化性能[J].催化学报,1993,14(2):121-126.
[17] Xu R R,Pang W Q,Yu J H,et al.Chemistry of Zeolites and Related Porous Materials:Synthesis and Structure[M].English:Wiley-Interscience,2010.
[18] Kokotailo G T,Lawton S L,Olson D H,et al.Structure of synthetic zeolite ZSM-5[J].Nature,1978,272(5652):437-438.
[19] 张海荣,张卿,李玉平,等.以SAPO-34为原料直接合成小晶粒PZSM-5及其甲醇转化催化性能[J].石油学报(石油加工),2010,26(3):357-363.
[20] 张海荣,宁掌玄,刘红艳,等.硅源对小晶粒ZSM-5分子筛性质及其甲醇转化制丙烯催化性能的影响[J].石油学报(石油加工),2017,33(4):724-729.
[21] Gonzalez G,Gomes M E,Vitale G,et al.Effect of Al content on phase transitions of zeolite MEL[J].Microporous & Mesoporous Materials,2009,121(1-3):26-33.
[22] 徐翊华,徐如人.IR微分光谱对ZSM-11构型分子筛骨架振动谱带的解析[J].石油学报(石油加工),1985(2):53-61.
[23] 须沁华,于秋明.红外光谱法研究不同硅铝比的ZSM-5及ZSM-11分子筛的骨架振动[J].高等学校化学学报,1988,9(5):508-509.
[24] Dyballa M,Becker P,Trefz D,et al.Parameters influencing the selectivity to propene in the MTO conversion on 10-ring zeolites:Directly synthesized zeolites ZSM-5,ZSM-11,and ZSM-22[J].Applied Catalysis A General,2016,510:233-243.
[25] 温鹏宇,梅长松,刘红星,等.甲醇分压和ZSM-5晶粒大小对甲醇制丙烯的影响[J].化学反应工程与工艺,2007,23(6):481-486.
[26] Sun X,Mueller S,Shi H,et al.On the impact of co-feeding aromatics and olefins for the methanol-to-olefins reaction on HZSM-5[J].Journal of Catalysis,2014,314(2000):21-31.
[27] Huang X,Aihemaitijiang D,Xiao W D:Co-reaction of methanol and olefins on the high silicon HZSM-5 catalyst:A kinetic study[J].Chemical Engineering Journal,2016,286(4):150-164.
[28] 董家騄,秦建昭,须沁华.ZSM-11型沸石的晶粒大小对催化反应的影响[J].燃料化学学报,1989(3):222-227.
[29] Liu J,Zhang C,Shen Z,et al.Methanol to propylene:Effect of phosphorus on a high silica HZSM-5 catalyst[J].Catalysis Communications,2009,10(11):1506-1509.
[30] 毛东森,郭强胜,卢冠忠.分子筛晶粒大小及磷改性对ZSM-5催化甲醇转化制丙烯的影响[J].石油学报(石油加工),2009,25(4):503-508.
[1] 宋利军. 甲醇作为车用汽油调合组分的利弊分析[J]. 现代化工, 2018, 38(8): 12-16.
[2] 刘经伟, 傅玉川, 沈俭一. 载体TiO2晶型对甲醇选择氧化性能的影响[J]. 现代化工, 2018, 38(8): 112-116.
[3] 王艺, 陈爽, 刘涛, 赵素娜. 超声-非均相Fenton法处理丙烯腈废水的工艺及机理[J]. 现代化工, 2018, 38(8): 147-151.
[4] 杜友兴, 孙天孜, 何立. 3-(二氯甲基)-1-甲基-4-氰基-1H-吡唑的连续化合成[J]. 现代化工, 2018, 38(8): 198-201,203.
[5] 刘杰, 孙美婷, 李玲. 一种液化分离二氧化碳净化工艺[J]. 现代化工, 2018, 38(8): 206-208.
[6] 孙永利, 杜莎, 澹台晓伟. 响应面法优化甲基丙烯酸缩水甘油酯合成工艺研究[J]. 现代化工, 2018, 38(7): 154-158.
[7] 张振. 苯乙烯装置薄膜蒸发器气相线聚合现象研究[J]. 现代化工, 2018, 38(7): 190-193.
[8] 郝传松, 张述伟, 李燕, 管凤宝. 低温甲醇洗富硫气深冷回收硫化氢工艺[J]. 现代化工, 2018, 38(7): 199-203.
[9] 韩淑萃, 杨金杯. 丙酸甲酯和甲醇共沸物萃取精馏分离工艺的研究[J]. 现代化工, 2018, 38(7): 214-218.
[10] 高文强, 焦纬洲, 刘有智. 超声强化苯甲醇合成苯甲醛的研究[J]. 现代化工, 2018, 38(6): 97-100.
[11] 卢静琼, 高成云, 赵彦生. 聚天冬氨酸互穿网络树脂的合成及敏感性研究[J]. 现代化工, 2018, 38(6): 133-135.
[12] 韩旭, 王吉林, 王璐璐, 吕振波. 吡咯类碱性离子液体的制备及其在阴离子导电膜中的应用[J]. 现代化工, 2018, 38(6): 122-127.
[13] 奚振宇, 王玉杰, 杨永强, 张新妙. 亲水改性聚丙烯分离膜应用性能研究[J]. 现代化工, 2018, 38(6): 192-194,196.
[14] 张晓飞, 张华, 罗臻. 丙烯腈污水电化学-化学复合氧化高效处理技术[J]. 现代化工, 2018, 38(6): 179-181.
[15] 缪平, 桑宇, 邢爱华. 纳米级ZSM-5分子筛的制备及其在甲醇制丙烯反应中的优势与劣势[J]. 现代化工, 2018, 38(5): 48-52.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn