Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2017, Vol. 37 Issue (10): 197-200    DOI: 10.16606/j.cnki.issn0253-4320.2017.10.047
  信息技术应用 本期目录 | 过刊浏览 | 高级检索 |
共沸-反应精馏隔壁塔制备乙酸乙酯的实验与模拟研究
李春利1,2, 董立会1, 马帅明1, 姜挺1, 闫磊1
1. 河北工业大学, 天津 300130;
2. 化工节能过程集成与资源利用国家地方联合工程实验室, 天津 300130
Experiment and simulation study of azeotropic-reactive distillation dividing wall column for production of ethyl acetate
LI Chun-li1,2, DONG Li-hui1, MA Shuai-ming1, JIANG Ting1, YAN Lei1
1. Hebei University of Technology, Tianjin 300130, China;
2. National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Tianjin 300130, China
下载:  PDF (1502KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对反应精馏中部分物系存在反应物与生成物相对挥发度较小、难以分离的问题,提出共沸-反应精馏隔壁塔结构。以酯化法制备乙酸乙酯为研究对象,对共沸-反应精馏隔壁塔的操作性能进行了分析。在搭建的1套反应精馏隔壁塔实验装置内进行了相应的实验研究,并用Aspen Plus进行了模拟,模拟结果与实验结果一致性良好;对共沸剂用量、液相分配比、塔顶回流比以及原料乙酸质量分数等因素的影响进行了模拟研究;对共沸-反应精馏隔壁塔进行了节能分析。与传统反应精馏相比,共沸-反应精馏隔壁塔可实现重组分乙酸和中间组分水的清晰分离,有效避免中间组分的返混,提高热力学效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李春利
董立会
马帅明
姜挺
闫磊
关键词:  反应精馏隔壁塔  乙酸乙酯  模拟  节能    
Abstract: The relative volatility between the reactant and the product is close to 1 for some mixtures,so they are hard to separate clearly by reactive distillation.The azeotropic-reactive distillation dividing wall column structure is proposed to solve such difficulties.Taking the synthesis of ethyl acetate with the esterifying method as study object,the operational performance of azeotropic-reactive dividing wall column is analyzed.An azeotropic-reactive dividing wall column experimental equipment is built up.The synthesis of ethyl acetate is studied through experiment in this equipment and also simulated by Aspen Plus.The results of simulation agree with the experiment ones very well.The influences of the amount of azeotropic agent,liquid phase split ratio,reflux ratio and the concentration of acetic acid in feedstock are simulated by Aspen Plus.The energy saving analysis is carried out for the azeotropic-reactive distillation dividing wall column.Compared with the traditional reactive distillation,the azeotropic-reactive dividing wall column can achieve clear separation between the heavy component acetic acid and intermediate component water,avoid the back-mixing of the intermediate components effectively,and improve thermodynamic efficiency.
Key words:  reactive distillation dividing-wall column    ethyl acetate    simulation    energy saving
收稿日期:  2017-03-02      修回日期:  2017-07-04           出版日期:  2017-10-20
TQ028.4  
基金资助: 河北省重点研发计划项目(16964502D);河北省重点基础研究项目(16214505D)
通讯作者:  李春利(1963-),男,博士,教授,研究方向为化工节能技术,通讯联系人,022-60204303,ctstlcl@163.com。    E-mail:  ctstlcl@163.com
引用本文:    
李春利, 董立会, 马帅明, 姜挺, 闫磊. 共沸-反应精馏隔壁塔制备乙酸乙酯的实验与模拟研究[J]. 现代化工, 2017, 37(10): 197-200.
LI Chun-li, DONG Li-hui, MA Shuai-ming, JIANG Ting, YAN Lei. Experiment and simulation study of azeotropic-reactive distillation dividing wall column for production of ethyl acetate. Modern Chemical Industry, 2017, 37(10): 197-200.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2017.10.047  或          http://www.xdhg.com.cn/CN/Y2017/V37/I10/197
[1] Asprion N,Kaibel G.Dividing wall columns:Fundamentals and recent advances[J].Chemical Engineering & Processing Process Intensification,2010,49(2):139-146.
[2] Ömer Yildirim,Kiss A A,Kenig E Y.Dividing wall columns in chemical process industry:A review on current activities[J].Separation & Purification Technology,2011,80(3):403-417.
[3] Qian X,Jia S,Luo Y,et al.Selective hydrogenation and separation of C3 stream by thermally coupled reactive distillation[J].Chemical Engineering Research & Design,2015,99:176-184.
[4] Kiss A A,Segovia-Hernández J G,Costin S,et al.Reactive DWC leading the way to FAME and fortune[J].Fuel,2012,95(1):352-359.
[5] Sun L,Bi X.Shortcut method for the design of reactive dividing wall column[J].Industrial & Engineering Chemistry Research,2014,53(6):2340-2347.
[6] Kang D,Lee J W.Graphical design of integrated reaction and distillation in dividing wall columns[J].Industrial & Engineering Chemistry Research,2015,54(12):3175-3185.
[7] Hernández S,Sandoval-Vergara R,Barroso-Muñoz F O,et al.Reactive dividing wall distillation columns:Simulation and implementation in a pilot plant[J].Chemical Engineering & Processing,2009,48(1):250-258.
[8] Kiss A A,Suszwalak J P C.Innovative dimethyl ether synthesis in a reactive dividing-wall column[J].Computers & Chemical Engineering,2012,38(10):74-81.
[9] Ignat R M,Kiss A A.Optimal design,dynamics and control of a reactive DWC for biodiesel production[J].Chemical Engineering Research & Design,2013,91(9):1760-1767.
[10] 孙兰义,王汝军,张月明,等.反应精馏隔壁塔应用于酯转换过程的研究[J].化学反应工程与工艺,2010,26(5):418-423.
[11] Santaella M A,Orjuela A,Rincón P C N.Comparison of different reactive distillation schemes for ethyl acetate production using sustainability indicators[J].Chemical Engineering & Processing Process Intensification,2015,96:1-13.
[12] Calvar N,González B,Dominguez A.Esterification of acetic acid with ethanol:Reaction kinetics and operation in a packed bed reactive distillation column[J].Chemical Engineering & Processing,2007,46(12):1317-1323.
[13] 方静,祁建超,李春利,等.隔壁塔四塔模型的设计计算[J].石油化工,2014,43(5):530-535.
[1] 范峥, 姬盼盼, 林亮, 刘钊, 井晓燕, 员汝娜. 天然气液化工艺系统模拟与节能优化[J]. 现代化工, 2018, 38(9): 219-223.
[2] 刘艳杰, 王犇, 潘高峰. 乙酸异丙酯回收工艺模拟与优化[J]. 现代化工, 2018, 38(9): 215-218.
[3] 杨兵兵, 李扬, 范赢, 孙姣, 陈文义. 隔壁塔分离乙醇-正丙醇-正丁醇体系[J]. 现代化工, 2018, 38(8): 217-220,222.
[4] 宋峻林, 唐荣联, 王洪. 絮凝过程CFD数值模拟研究[J]. 现代化工, 2018, 38(8): 231-235.
[5] 郭斌, 王红红, 边永欢, 张轩. 蓄热式氧化器处理挥发性有机物的数值模拟技术及应用进展[J]. 现代化工, 2018, 38(7): 44-47,49.
[6] 李春利, 姜挺, 孙立军. 带有隔板塔的NFM萃取精馏工艺模拟和优化[J]. 现代化工, 2018, 38(7): 219-222.
[7] 马国光, 郭海星, 姚丽蓉. 高含氮天然气冷油吸收工艺参数模拟分析[J]. 现代化工, 2018, 38(7): 227-231.
[8] 史雪君, 吴道洪. 天然气非催化部分氧化制还原气的净化系统模拟[J]. 现代化工, 2018, 38(6): 206-210.
[9] 李景辉, 叶仲斌, 吴基荣, 范祝君, 王治红. 醇胺法天然气脱硫脱碳装置有效能分析与节能措施探讨[J]. 现代化工, 2018, 38(6): 186-191.
[10] 赵特特, 秦建昕, 周静. 二甲醚羰基化制乙酸甲酯工艺中精制分离过程的模拟计算[J]. 现代化工, 2018, 38(6): 225-226,228.
[11] 李亚广, 聂陟枫, 周扬民, 方文宝, 谢刚, 侯彦青. 改良西门子法制备多晶硅还原过程研究进展[J]. 现代化工, 2018, 38(5): 38-42.
[12] 柳康, 刘沅, 樊强, 陈雄, 任永强, 许世森. 燃烧前CO2捕集MDEA系统模拟及优化[J]. 现代化工, 2018, 38(5): 201-204.
[13] 吴红梅, 郭宇, 吕兴旺, 陈强强, 殷慧敏. 煤基含氮合成气一步法制二甲醚工艺的模拟与优化[J]. 现代化工, 2018, 38(5): 205-209,211.
[14] 江姗姗. 化工行业蒸汽余热余压回收利用的节能改造[J]. 现代化工, 2018, 38(5): 191-193.
[15] 卜令兵. 单床方法模拟十床变压吸附提氢[J]. 现代化工, 2018, 38(4): 215-219.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn