Please wait a minute...
 
最新公告: 关于寒假期间版面费发票延迟邮寄的通知    
现代化工  2017, Vol. 37 Issue (10): 65-67,69    DOI: 10.16606/j.cnki.issn0253-4320.2017.10.015
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
纳米SiO2/酚醛泡沫复合材料的力学性能与形貌结构
郭亚军, 胡立红, 周永红
中国林业科学研究院林产化学工业研究所, 国家林业局林产化学工程重点开放性实验室, 江苏 南京 210042
Mechanical properties and morphology structure of nano SiO2/phenolic foam composite materials
GUO Ya-jun, HU Li-hong, ZHOU Yong-hong
Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
下载:  PDF (2926KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以苯酚为溶剂,正硅酸四乙酯(TEOS)为硅源,采用溶胶-凝胶法制备了纳米SiO2,将其引入到酚醛树脂中,最终制得改性酚醛泡沫。利用傅里叶变换红外光谱、扫描电镜、电子万能试验机等方法对泡沫材料进行表征。测试结果表明,纳米SiO2与酚醛树脂成功发生反应形成共价键。扫描电镜显示,硅酯质量分数为5%时,泡沫具有最规整的形貌结构;同时,此添加量下的酚醛泡沫力学性能最优,压缩强度和弯曲强度较纯泡沫提高50%和95%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭亚军
胡立红
周永红
关键词:  溶胶-凝胶  酚醛泡沫  形貌结构  力学性能    
Abstract: Nano scale SiO2 is prepared by sol-gel process using phenol as solvent and TEOS as silica source,and then is added into phenolic resin.Ultimately,the modified phenolic foam materials are prepared.The foam materials prepared are characterized by Fourier transform infrared spectroscopy,scanning electron microscopy (SEM) and electronic universal testing machine.The test results show that the nano scale SiO2 reacts with phenolic resin successfully to form covalent bonds.SEM shows that when the mass concentration of TEOS is 5%,the foam materials prepared have the most regular morphology and the best mechanical properties,and the compressive strength and bending strength are 50% and 95% higher respectively than pure phenolic resins.
Key words:  sol-gel    phenolic foam    morphology structure    mechanical properties
收稿日期:  2017-06-10                出版日期:  2017-10-20
TQ322.4  
基金资助: 十三五国家重点研发计划(2017YFD0601000);国家自然科学基金面上项目(31470613);林化所创新工程项目(LHSXKQ11)
通讯作者:  胡立红(1974-),女,博士,副研究员,主要从事生物质高分子材料的应用研究,通讯联系人,zhlh990907@sina.com。    E-mail:  zhlh990907@sina.com
作者简介:  郭亚军(1992-),男,硕士研究生,研究方向为生物基酚醛泡沫的制备及性能,ggguoyajun@163.com
引用本文:    
郭亚军, 胡立红, 周永红. 纳米SiO2/酚醛泡沫复合材料的力学性能与形貌结构[J]. 现代化工, 2017, 37(10): 65-67,69.
GUO Ya-jun, HU Li-hong, ZHOU Yong-hong. Mechanical properties and morphology structure of nano SiO2/phenolic foam composite materials. Modern Chemical Industry, 2017, 37(10): 65-67,69.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2017.10.015  或          http://www.xdhg.com.cn/CN/Y2017/V37/I10/65
[1] Bernal M M,Martingallego M,Molenberg I,et al.Influence of carbon nanoparticles on the polymerization and EMI shielding properties of PU nanocomposite foams[J].RSC Advances,2014,4(16):7911-7918.
[2] 马灼明,李淑君,杨冬梅.酶解木质素的活化及用于酚醛树脂的制备[J].森林工程,2017,33(2):64-67.
[3] 时金金,郭元茹,潘清江.以碱木质素胺盐为模板制备纳米二氧化钛及其光催化性能研究[J].森林工程,2015,31(3):54-56.
[4] Bo C,Hu L,Zhou J,et al.Preparation and characteriztion of phenolic foams modified by castor oil-based polyurethane prepolymer[J].Chemistry and Industry of Forest Products,2015,35(4):8-14.
[5] Liang B,Li X,Hu L,et al.Foaming resol resin modified with polyhydroxylatedcardanol and its application to phenolic foams[J].Industrial Crops and Products,2016,80:194-196.
[6] Li S,Chen F,Han Y,et al.Enhanced compatibility and morphology evolution of the hybrids involving phenolic resin and silicone intermediate[J].Materials Chemistry and Physics,2015,165:25-33.
[7] Kaynak C,Cagatay O.Rubber toughening of phenolic resin by using nitrile rubber and amino silane[J].Polymer Testing,2006,25(3):296-305.
[8] Periadurai T,Vijayakumar C T,Balasubramanian M.Thermal decomposition and flame retardant behaviour of SiO2-phenolic nanocomposite[J].Journal of Analytical and Applied Pyrolysis,2010,89(2):244-249.
[9] Li Q,Chen L,Zhang J,et al.Enhanced mechanical properties,thermal stability of phenolic-formaldehyde foam/silica nanocomposites via in situ polymerization[J].Polymer Engineering and Science,2016,55(12):2783-2793.
[10] Yuan J,Zhang Y,Wang Z.Phenolic foams toughened with crosslinked poly (n-butyl acrylate)/silica core-shell nanocomposite particles[J].Journal of Applied Polymer Science,2015,132(40):42590.
[1] 褚衍倩, 魏永梅, 王涛, 金浩, 田恒水. PEG/PTMG共聚醚型聚氨酯弹性体制备工艺的研究[J]. 现代化工, 2018, 38(7): 132-135,137.
[2] 王露, 陈王觅, 衣守志. 纳米隔热保温涂料的制备与性能研究[J]. 现代化工, 2018, 38(4): 165-168.
[3] 马超, 张越锋, 吴瑛. 梭形复合纳米TiO2的制备及其对植物病原菌的抗菌性能评价[J]. 现代化工, 2018, 38(3): 151-155.
[4] 武小满, 刘永建. GO复合的混晶TiO2的光催化性能[J]. 现代化工, 2018, 38(1): 121-124.
[5] 李伟伟. 废旧正极材料溶胶-凝胶自蔓延燃烧法制备LiNi0.5Co0.2Mn0.3O2的研究[J]. 现代化工, 2017, 37(6): 87-89,91.
[6] 孙镇, 向延鸿, 李剑, 吴贤文, 刘志雄, 伍建华, 熊利芝, 何则强, 吴显明. Li1.2Ni0.2Mn0.6O2溶胶-凝胶制备与电化学性能研究[J]. 现代化工, 2017, 37(5): 85-88.
[7] 阮艳莉, 郑斌, 刘萍. 钠离子电池正极材料Na(Mn0.4Fe0.2Ni0.35Mg0.05)O2的制备及电化学性能研究[J]. 现代化工, 2016, 36(7): 95-99.
[8] 李文惠, 张垠, 王定改, 徐哲哲, 艾佳楠. 硅酸三钙水化过程中合成掺杂硅的球形球霰石[J]. 现代化工, 2015, 35(4): 68-70.
[9] 叶菊娣, 李小保, 虞霁, 洪建国. 蒙脱土/球磨木粉/苄基化木粉复合材料的制备研究[J]. 现代化工, 2015, 35(4): 92-95.
[10] 董珈豪, 戚远慧, 韦良强, 孙静, 秦舒浩. 原位成纤技术研究进展[J]. 现代化工, 2015, 35(2): 23-26.
[11] 周文君, 张敬礼, 崔旭东, 何伟壮. 有机硅阻燃木塑复合材料的性能研究[J]. 现代化工, 2015, 35(11): 67-71.
[12] 姚跃宾, 李洪, 李鑫钢, 高鑫. 层数和表面开孔对金属丝网填料性能的影响[J]. 现代化工, 2014, 34(11): 127-131.
[13] 陈洁,蒋剑春,聂小安,常侠,徐俊明. 环氧脂肪酸甲酯增塑剂的研制及应用[J]. , 2013, 32(3): 0-0.
[14] 李群生,张满霞,汤效飞,李仑,文放,王宝华. 导向筛板-导向浮阀塔板流体力学及传质性能[J]. , 2013, 32(3): 0-0.
[15] 苑慧敏,张永军,王凤荣,张志翔. 甲烷氧化制合成气LaFeO3催化剂的制备条件考察[J]. , 2011, 31(8): 0-0.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn