Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2017, Vol. 37 Issue (9): 21-24,26    DOI: 10.16606/j.cnki.issn0253-4320.2017.09.005
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
CO2非均相催化加氢及氧化脱氢研究进展
宋珂琛, 郭雪琪, 许德平
中国矿业大学(北京)化学与环境工程学院, 北京 100083
Perspective on CO2 conversion by heterogeneous catalytic hydrogenation and oxidation dehydrogenation
SONG Ke-chen, GUO Xue-qi, XU De-ping
School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
下载:  PDF (1375KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 综述了CO2非均相转化为多种化学品的若干途径,主要包括CO2加氢制甲醇和CO2甲烷化工艺及作为弱氧化剂氧化低碳烷烃脱氢制烯烃工艺,着重分析了非均相转化过程的关键技术和难点问题,包括催化剂的特性、催化反应机理及工业应用中存在的问题,同时对非均相资源化应用的发展前景提出设想。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋珂琛
郭雪琪
许德平
关键词:  温室气体  CO2  催化剂  加氢  氧化脱氢    
Abstract: Several typical catalytic reaction pathways for heterogeneous phase conversion of CO2 to useful value-added chemicals are reviewed,including oxidative hydrogenation of CO2 to make methanol,methanation of CO2,and using CO2 as weak oxidizer to oxidize low carbon alkane to dehydrogenate and make olefins.The key technologies and difficult problems in the heterogeneous phase conversion process,such as characteristics of the catalysts involved,reaction mechanisms and challenges in industrial use are analyzed emphatically.The development prospects for the resource application of heterogeneous phase conversion is imaged and proposed.
Key words:  greenhouse gases    CO2    catalyst    hydrogenation    oxidative dehydrogenation
收稿日期:  2017-02-22      修回日期:  2017-06-22           出版日期:  2017-09-20
TQ21  
  O643.38  
通讯作者:  许德平(1963-),男,博士,教授,研究方向为煤炭化学转化,通讯联系人,xdp1073@163.com    E-mail:  xdp1073@163.com
作者简介:  宋珂琛(1991-),男,博士生,研究方向为工业催化,songkechenxuexi@163.com
引用本文:    
宋珂琛, 郭雪琪, 许德平. CO2非均相催化加氢及氧化脱氢研究进展[J]. 现代化工, 2017, 37(9): 21-24,26.
SONG Ke-chen, GUO Xue-qi, XU De-ping. Perspective on CO2 conversion by heterogeneous catalytic hydrogenation and oxidation dehydrogenation. Modern Chemical Industry, 2017, 37(9): 21-24,26.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2017.09.005  或          http://www.xdhg.com.cn/CN/Y2017/V37/I9/21
[1] Vesna Havran,Milorad P Dudukovi,Cynthia S Lo.Conversion of methane and carbon dioxide to higher value products[J].Ind Eng Chem Res,2011,50:7089-7100.
[2] Hua B,Guild C,Suib S L.Thermal,electrochemical,and photochemical conversion of CO2 to fuels and value-added Products[J].J CO2 Util,2013,1(1):18-27.
[3] Olajire A A.Valorization of greenhouse carbon dioxideemissions into value-added products by catalytic processes[J].J CO2 Util,2013,3/4:74-92.
[4] Mimura N,Takahara I,Saito M,et al.Dehydrogenation of ethylbenzene over iron oxide-based catalyst in the presence of carbon dioxide[J].Cata Today,1998,45(1/2/3/4):61-64.
[5] Zhang Li,Wu Zli,Nicholas C N,et al.Role of CO2 as a soft oxidant for dehydrogenation of ethylbenzene to styrene over a high-surface-area ceria catalyst[J].ACS Cata,2015,5:6426-6435.
[6] Liu Zhongwen,Wang Chan,Fan Weibin,et al.V2O5/Ce0.6Zr0.4O2/Al2O3 as an efficient catalyst for the oxidative dehydrogenation of ethylbenzene with carbon dioxide[J].Chem Sus Chem,2011,4:341-345.
[7] Li Changshun,Zhang Aimin.Binary Ce-Mn oxides confined in carbon nanotubes as efficient catalysts for ethylbenzene dehydrogenation in the presence of carbon dioxide[J].RSC Adv,2015,5:36394-36403.
[8] Fan Hongxia,Feng Jie,Li Xiaohong,et al.Ethylbenzene dehydrogenation to styrene with CO2 over V2O5(001):A periodic density functional theory study[J].Chem Eng Sci,2015,135:403-411.
[9] Burri A,Jiang Na,Yahyaoui K,et al.Ethylbenzene to styrene over alkali doped TiO2-ZrO2 with CO2 as soft oxidant[J].Appl Catal A,2015,495:192-199.
[10] Periyasamy K,Aswathy V T,Ashok K,et al.An efficient robust fluorite CeZrO4-δ oxide catalyst for the eco-benign synthesis of styrene[J].RSC Adv,2015,5:3619-3626.
[11] Deboshree M,Park S E,Benjaram M R.CO2 as a soft oxidant for oxidative dehydrogenation reaction:An eco benign process for industry[J].J CO2 Util,2016,16:301-312.
[12] Rahmani F,Haghighi M,Amini M.The beneficial utilization of natural zeolite in preparation of Cr/clinoptilolite nanocatalyst used in CO2-oxidative dehydrogenation of ethane to ethylene[J].J Ind Eng Chem,2015,31:142-155.
[13] Shi Xuejun,Ji Shnegfu,Wang Kai.Oxidative dehydrogenation of ethane to ethylene with carbondioxide over Cr-Ce/SBA-15 Catalysts[J].Catal Lett,2008,125:331-339.
[14] Heracleous E,Lemonidou A.Ni-Nb-O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation.Part Ⅰ:Characterization and catalytic performance[J].J Catal,2006,237:162-174.
[15] Abass A.Valorzation of greenhouse carbon dioxide emissions into value-added products by catalytic processes[J].J CO2 Util,2013,3/4:74-92.
[16] Olah G A.Beyond oil and gas:The methanol economy[J].Angew Chem Int Ed,2005,44:2636-2639.
[17] Liu Jinyao,Shi Jiangliu,He Dehua,et al.Surface active structure of ultra-fine Cu/ZrO2 catalysts used for the CO2+H2 to methanol reaction[J].Appl Catal A:Gen,2001,218:113-119.
[18] Melian Cabrera I,Granados M L,FierroJ L G.Reverse topotactic transformation of a Cu-Zn-Al catalyst during wet Pd impregnation:Relevance for the performance in methanol synthesis from CO2/H2 mixtures[J].J Catal,2002,210:273-284.
[19] Collins S E,Baltanas M A,Bonivardi A L.An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pd/γ-Ga2O3[J].J Catal,2004,226:410-421.
[20] Lim H W,Park M J,Kang S H,et al.Modeling of the kinetics for methanol synthesis using Cu/ZnO/Al2O3/ZrO2 catalyst:Influence of carbon dioxide during hydrogenation[J].Ind Eng Chem Res,2009,48:10448-10455.
[21] Riani P,Garbarino P,Lucchini M A,et al.Unsupported versus alumina-supported Ni nanoparticles as catalysts for steam/ethanol conversion and CO2 methanation[J].J Mol Catal A:Chem,2014,383:10-16.
[22] Zhu Pengfei,Chen Qingjun,Yoneyama Y,et al.Nanoparticle modified Ni-based bimodal pore catalysts for enhanced CO2 methanation[J].RSC Adv,2014,4:64617-64624.
[23] Lu Huailiang,Yang Xuzhuang,Gao guanjun,et al.Mesoporous zirconia-modified clays supported nickel catalysts for CO and CO2 methanation[J].Intertional Jounal Hydrogen Energy,2014,39:18894-18907.
[24] Zhou Long,Wang Qianqian,Ma Long,et al.CeO2 Promoted mesoporous Ni/γ-Al2O3 catalyst and its reaction conditions for CO2 methanation[J].Catal Lett,2014,145:612-619.
[25] Razzaq R,Zhu H,Jiang H,et al.Catalytic methanation of CO and CO2 in coke oven gas over Ni-Co/ZrO2-CeO2[J].Ind Eng Chem Res,2013,52:2247-2256.
[26] Pan Q,Peng J,Sun T,et al.Insight into the reaction route of CO2 methanation:Promotion effect of medium basic sites[J].Catal Commun,2014,45:74-78.
[27] Zamani A H,Ali R,Bakar W A.Optimization of CO2 methanation reaction over M*/Mn/Cu-Al2O3 (M*:Pd,Rh and Ru) catalysts[J].J Taiwan Inst Chem Eng,2014,45:143-152.
[28] Martins J,Batail N,Silva S,et al.CO2 hydrogenation with shape-controlled Pd nanoparticles embedded in mesoporous ilica:Elucidating stability and selectivity issues[J].Catal Commun,2015,58:11-15.
[29] Zhen Wenlong,Li Bo,Lu Gongxuan,et al.Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion[J].Chem Commun,2015,51:1728-1731.
[30] 刘昌俊,郭秋婷,叶静云,等.二氧化碳转化催化剂研究进展及相关问题思考[J].化工学报,2016,67(1):6-13.
[1] 陈川, 薛叙明. α-蒎烯固定床加氢制顺式蒎烷[J]. 现代化工, 2018, 38(9): 110-112,114.
[2] 颜鑫, 卢云峰. 碳化气浓度渐降模式对纳米碳酸钙碳化过程的影响研究[J]. 现代化工, 2018, 38(9): 180-183.
[3] 黄水望, 钟晶洁, 杨宝良, 张小露. 连续重整待生催化剂碳含量异常原因分析[J]. 现代化工, 2018, 38(9): 192-194.
[4] 杨凌, 申涛, 宋云华, 刘璐. 定-转子除尘技术在FCC喷雾尾气除尘上的应用研究[J]. 现代化工, 2018, 38(9): 198-201.
[5] 杨凤丽, 仝雪, 秦丽珍, 郑纯智, 夏斐斐. 铌类固体酸催化糖转化5-羟甲基糠醛研究进展[J]. 现代化工, 2018, 38(9): 28-32.
[6] 刘凯, 田原宇, 张君涛. 萘选择性催化加氢催化剂研究进展[J]. 现代化工, 2018, 38(9): 45-49.
[7] 杨涛, 戴鑫, 杨天华, 李伟, 黄传峰, 韩智发, 石欣, 王蒙. 煤焦油重组分加氢技术现状及研究趋势探讨[J]. 现代化工, 2018, 38(9): 60-63,65.
[8] 郝五兴, 张静, 薛飞, 张永发. 褐煤半焦热解温度对其加氢制甲烷活性的影响[J]. 现代化工, 2018, 38(9): 85-89.
[9] 尹松虎, 司学见, 白云翔, 张春芳. 羧基化聚酰亚胺膜的制备及其对CO2/CH4分离性能的研究[J]. 现代化工, 2018, 38(8): 135-138.
[10] 段玉梅, 郑长征, 李亚斐, 丁羽佳, 张兴. Ni改性Cu-Fe基催化剂的制备及其在CO加氢制低碳醇中的性能研究[J]. 现代化工, 2018, 38(8): 139-142,144.
[11] 王艺, 陈爽, 刘涛, 赵素娜. 超声-非均相Fenton法处理丙烯腈废水的工艺及机理[J]. 现代化工, 2018, 38(8): 147-151.
[12] 韩晓霞, 赵超凡. 神经网络及遗传算法在催化剂设计中的应用[J]. 现代化工, 2018, 38(8): 213-216.
[13] 蔡亭伟, 丁颖, 徐丽慧. 三维石墨烯基光催化剂的研究进展[J]. 现代化工, 2018, 38(8): 17-22.
[14] 任健, 李大鹏, 王宁波, 王永娟, 姚晓虹, 王维, 杨帆, 党昱. 基于C1化学的低碳烯烃合成技术研究进展[J]. 现代化工, 2018, 38(8): 58-62.
[15] 俞海淼, 刘阳, 武子璐. 生物质三组分催化气化后焦油析出特性研究[J]. 现代化工, 2018, 38(8): 90-93.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn