Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2017, Vol. 37 Issue (8): 67-71    DOI: 10.16606/j.cnki.issn0253-4320.2017.08.016
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
泡沫镍在电容器和微生物燃料电池方面的应用
原诗瑶, 侯彬, 周杰
中北大学化工与环境学院, 山西 太原 030051
Applications of nickel foam in capacitors and microbial fuel cells
YUAN Shi-yao, HOU Bin, ZHOU Jie
Institute of Chemical and Environmental Engineering, North University of China, Taiyuan 030051, China
下载:  PDF (1229KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 简单介绍了泡沫镍的性能,总结了泡沫镍作为电极材料在超级电容器及微生物燃料电池方面的应用,并展望了其广阔的市场前景及发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
原诗瑶
侯彬
周杰
关键词:  泡沫镍  超级电容器  微生物燃料电池    
Abstract: The performance of nickel foam is introduced.The application of nickel foam as electrode material in supercapacitor and microbial fuel cell are reviewed.The broad market prospect and development direction are also expected.
Key words:  nickel foam    supercapacitor    microbial fuel cell
收稿日期:  2017-01-03      修回日期:  2017-06-06           出版日期:  2017-08-20
X703  
通讯作者:  原诗瑶(1993-),女,硕士生,研究方向为微生物燃料电池,通讯联系人,zbdxysy@163.com。    E-mail:  zbdxysy@163.com
引用本文:    
原诗瑶, 侯彬, 周杰. 泡沫镍在电容器和微生物燃料电池方面的应用[J]. 现代化工, 2017, 37(8): 67-71.
YUAN Shi-yao, HOU Bin, ZHOU Jie. Applications of nickel foam in capacitors and microbial fuel cells. Modern Chemical Industry, 2017, 37(8): 67-71.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2017.08.016  或          http://www.xdhg.com.cn/CN/Y2017/V37/I8/67
[1] 沈顺玲.电磁屏蔽材料研究进展[J].考试周刊,2016,(64):195-196.
[2] 李亚宁,汪强兵,汤慧萍,等.泡沫镍基合金材料制备及应用研究进展[J].稀有金属材料与工程,2015,(11):2932-2936.
[3] Esque-de los Ojos D,Zhang J,Fornell J,et al.Nanomechanical behaviour of open-cell nanoporous metals:Homogeneous versus thickness-dependent porosity[J].Mechanics of Materials,2016,100:167-174.
[4] Eugenio S,Cardoso D S P,Santos D M F.Nanostructured 3D metallic foams for H2O2 electroreduction[J].International Journal of Hydrogen Energy,2016,41(32):14370-14376.
[5] Gao Feng,Xu Biyan,Wang Qinghua.Potentiostatic deposition of CoNi2S4 nanosheet arrays on nickel foam:Effect of depostion time on the morphology and pseudocapacitive performance[J].Journal of Materials Science,2016,51(23):10641-10651.
[6] Moyseowicz A,Sliwak A,Gryglewicz G.Influence of structural and textural parameters of carbon nanofibers on their capacitive behavior[J].Journal of Materials Science,2016,51(7):3431-3439.
[7] Zhu Guoyin,He Zhichen,Chen Jun,et al.Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as abinder-free supercapacitor electrode[J].Nanoscale,2014,6(2):1079-1085.
[8] Cai D,Wang D,Wang C,et al.Construction of desirable NiCo2S4 nanotube arrays on nickel foam substrate for pseudocapacitors with enhanced performance[J].Electrochim Acta,2015,151:35-41.
[9] Shahrokhian S,Mohammadi R,Asadian E.One-step fabrication of electrochemically reduced grapheme oxide/nickel oxide composite for binder-free supercapacitors[J].International Journal of Hydrogen Energy,2016,41(39):17496-17505.
[10] Wang Xiuhua,Xia Houyong,Wang Xiuqin.Facile synthesis ultrathin mesoporous Co3O4 nanosheets for high-energy asymmetric supercapacitor[J].Journal of Alloys and Compounds,2016,686:969-975.
[11] Zhao Chongjun,Ju Peiwen,Wang Shengqi.One-step hydrothermal preparation of TiO2/RGO/Ni(OH)2/NF electrode with high performance for supercapacitors[J].Electrochimica Acta,2016,218:216-227.
[12] Zhou Pei,Fan Leqing,Wu Jihuai.Facile hydrothermal synthesis of NiTe and its application as positive electrode material for asymmetric supercapacitor[J].Journal of Alloys and Compounds,2016,685:384-390.
[13] Wang Mingxing,Wang Yongzhen,Dou Huanglin.Enhanced rate capability of nanostructured three-dimensional graphene/Ni3S2 composite for supercapacitor electrode[J].Ceramics International,2016,42(8):9858-9865.
[14] Bai Xue,Liu Qi,Zhang Hongsen.Nickel-cobalt layered double hydroxide nanowires on three dimensional grapheme nickel foam for high performance asymmetric supercapacitors[J].Electrochimica Acta,2016,215:492-499.
[15] Karthikeyan R,Krishnaraj N,Selvam A,et al.Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts[J].Bioresource Technology,2016,217:113-120.
[16] 吴自润.基于泡沫金属电极的微生物燃料电池产电性能研究[D].广州:华南理工大学,2011.
[17] Wen Qing,Liu Zhimin,Chen Ye.Electrochemical performance of microbial fuel cell with air-cathode[J].Acta Physico-Chimica Sinica,2008,24(6):1063-1067.
[18] 吴健成.低成本高性能微生物燃料电池空气阴极的制备及阴极状态解析的探索[D].杭州:浙江大学,2013.
[19] 杨斯琦,刘中良,侯俊先,等.微生物燃料电池MnO2/S-AC泡沫镍空气阴极的制备及其性能[J].化工学报,2015,66(S1):202-208.
[20] René A Rozendal.Effects of membrane cation transport on pH and microbial fuel cell performance[J].Environmental Science & Technology,2006,40(17):5206-5211.
[21] Liu Jia,Feng Yujie,Wang Xin.The effect of water proofing on the performance of nickel foam cathode in microbial fuel cells[J].Journal of Power Sources,2012,198:100-104.
[22] Cheng Shaoan,Wu Jiancheng.Air-cathode preparation with activated carbon as catalyst,PTFE as binder and nickel foam as current collector for microbial fuel cells[J].Bioelectrochemistry,2013,92:22-26.
[23] Touach N,Ortiz-Martinez V M,Salar-Garcia M J.Influence of the preparation method of MnO2-based cathodes on the performance of single-chamber MFCs using wastewater[J].Separation and Purification Technology,2016,171:174-181.
[24] 陈洁,孙健,胡勇有,等.石墨烯修饰电极微生物燃料电池及其抗菌性研究进展[J].环境科学学报,2016,36(2):387-397.
[25] 马彦,樊磊,薄晓,等.微生物燃料电池阳极材料研究进展[J].化工新型材料,2016,(2):21-23.
[26] Yong Yang-Chun,Dong Xiao-Chen,Chan-Park Mary B.Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells[J].Acs Nano,2012,6(3):2394-2400.
[27] Wang Hanyu,Wang Gongming,Ling Yichuan.High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode[J].Nanoscale,2013,5(21):10283-10290.
[28] Karthikeyan R,Krishnaraj N,Selvam A.Effect of composites based nickel foam anode in microbial fuel cell using acetobacter aceti and gluconobacter roseus as a biocatalysts[J].Bioresource Technology,2016,217:113-120.
[29] Zhang Changyong,Liang Peng,Yang Xufei.Binder-free graphene and manganese oxide coated carbon felt anode forhigh-performance microbial fuel cell[J].Biosensors & Bioelectronics,2016,81:32-38.
[1] 王钊, 岳红彦, 俞泽民, 高鑫, 姚龙辉, 王宝. 化学气相沉积制备泡沫石墨烯超级电容器电极研究进展[J]. 现代化工, 2018, 38(9): 33-35,37.
[2] 卓露, 汪兴兴, 吕帅帅, 黄明宇, 倪红军. 微生物燃料电池技术的研究进展[J]. 现代化工, 2017, 37(8): 41-44.
[3] 薄涛, 翟洪艳, 季民. 微生物电解池在氢气制备中的应用[J]. 现代化工, 2017, 37(8): 50-54.
[4] 康冰艳, 侯彬, 卢新陈. 微生物燃料电池阴极碳载体催化剂的研究进展[J]. 现代化工, 2017, 37(8): 55-59.
[5] 孙瑶, 赵金辉, 姜成, 吴梦柯, 谢西, 林晨彤. 人工湿地-微生物燃料电池耦合系统的研究现状与展望[J]. 现代化工, 2017, 37(8): 60-63.
[6] 温雅琼, 李作鹏, 邢宝岩, 王玉珍, 沈腊珍, 郭永. Ni(OH)2/石墨烯/Co(OH)2电极材料制备及其电容性能研究[J]. 现代化工, 2017, 37(7): 68-73.
[7] 刘志森, 张志远, 徐鑫. 二氧化锰为氧化剂制备多孔石墨烯@聚苯胺超级电容器材料的研究[J]. 现代化工, 2017, 37(7): 117-120.
[8] 王丽, 李雪, 王琳. 湿地型微生物燃料电池处理废水及同步产电研究[J]. 现代化工, 2017, 37(6): 154-157.
[9] 倪红军, 陈祥, 汪兴兴, 陈青青, 吕帅帅. 微生物燃料电池中产电微生物的研究进展[J]. 现代化工, 2017, 37(3): 46-49.
[10] 范玉姣, 焦文强, 黄成德. 功能化对石墨纳米片/MnO2复合材料性能的影响[J]. 现代化工, 2017, 37(11): 127-131.
[11] 马骏, 晋日亚, 郑璐, 孙友谊. 自支撑石墨烯/二氧化锰/泡沫镍复合材料的电化学性能[J]. 现代化工, 2016, 36(3): 114-116,118.
[12] 武金珠, 卢丹丹, 张瑞, 朱彦荣, 杨双瑗, 诸荣孙, 伊廷锋. 超级电容器NiCo2O4材料的水热法合成及其电化学性能[J]. 现代化工, 2016, 36(2): 80-82,84.
[13] 杜晓军, 武文革, 成云平. Co3O4/Ni泡沫复合材料的制备及其在超级电容器的应用研究[J]. 现代化工, 2016, 36(11): 112-115,117.
[14] 聂艳艳, 孙晓刚, 庞志鹏, 岳立福, 刘珍红. 碳纳米管导电纸超级电容器[J]. 现代化工, 2015, 35(8): 105-108,110.
[15] 范方舟, 翟洪艳, 季民. 微生物燃料电池在治污产能方面的研究进展[J]. 现代化工, 2015, 35(12): 19-23.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn