Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2017, Vol. 37 Issue (8): 55-59    DOI: 10.16606/j.cnki.issn0253-4320.2017.08.013
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
微生物燃料电池阴极碳载体催化剂的研究进展
康冰艳, 侯彬, 卢新陈
中北大学化工与环境学院, 山西 太原 030051
Research progress of carbon supported catalysts for microbial fuel cell cathode
KANG Bing-yan, HOU Bin, LU Xin-chen
School of Chemical and Environmental Engineering, North University of China, Taiyuan 030051, China
下载:  PDF (1235KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 重点总结了近年来活性炭、碳纳米管、石墨烯作为微生物燃料电池阴极催化剂的研究进展,并分析讨论了其存在的局限和发展方向,同时对其他形式的碳载体催化剂的研究成果进行了简单介绍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
康冰艳
侯彬
卢新陈
关键词:  微生物燃料电池  氧还原  活性炭  碳纳米管  石墨烯    
Abstract: The research progress on using activated carbon,carbon nanotubes and graphene as cathode catalysts of microbial fuel cell in recent years are mainly summarized,and their existing limitations and development trends are analyzed and discussed.Meanwhile,the research results on other forms of carbon supported catalysts are also simply introduced.
Key words:  microbial fuel cell    oxygen reduction reaction    activated carbon    carbon nanotubes    graphene
收稿日期:  2017-02-16      修回日期:  2017-06-06           出版日期:  2017-08-20
TM911.45  
通讯作者:  侯彬(1983-),男,博士,讲师,研究方向为新型废水处理技术,通讯联系人,120576918@qq.com。    E-mail:  120576918@qq.com
作者简介:  康冰艳(1992-),女,硕士生
引用本文:    
康冰艳, 侯彬, 卢新陈. 微生物燃料电池阴极碳载体催化剂的研究进展[J]. 现代化工, 2017, 37(8): 55-59.
KANG Bing-yan, HOU Bin, LU Xin-chen. Research progress of carbon supported catalysts for microbial fuel cell cathode. Modern Chemical Industry, 2017, 37(8): 55-59.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2017.08.013  或          http://www.xdhg.com.cn/CN/Y2017/V37/I8/55
[1] Kannan M V,Gnana K G.Current status,key challenges and its solutions in the design and development of graphene based ORR catalysts for the microbial fuel cell applications[J].Biosensors & Bioelectronics,2015,77:1208-1220.
[2] Karthikeyan R,Selvam A,Cheng K Y,et al.Influence of ionic conductivity in bioelectricity production from saline domestic sewage sludge in microbial fuel cells[J].Bioresource Technology,2016,200:845-52.
[3] Liang S B,Gliniewicz K,Gerritsen A T,et al.Analysis of microbial community variation during the mixed culture fermentation of agricultural peel wastes to produce lactic acid[J].Bioresource Technology,2016,208:7-12.
[4] Gajda I,Stinchcombe A,Greenman J,et al.Microbial fuel cell-A novel self-powered wastewater electrolyser for electrocoagulation of heavy metals[J].International Journal of Hydrogen Energy,2016,42(3):1813-1819.
[5] Sherafatmand M,Howyong N.Using sediment microbial fuel cells (SMFCs) for bioremediation of polycyclic aromatic hydrocarbons (PAHs)[J].Bioresource Technology,2015,195(6):122-124.
[6] Kim K Y,Yang W L,Evans P J,et al.Continuous treatment of high strength wastewaters using air-cathode microbial fuel cells[J].Bioresource Technology,2016,221:96-101.
[7] Iannaci A,Sciarria T P,Mecheri B,et al.Power generation using a low-cost sulfated zirconium oxide based cathode in single chamber microbial fuel cells[J].Journal of Alloys & Compounds,2016,693:170-176.
[8] Kamaraj S K,Romano S M,Moreno V C,et al.Use of Novel reinforced cation exchange membranes for microbial fuel cells[J].Electrochimica Acta,2015,176:555-566.
[9] Liu J C,Wang Y,Deng Q,et al.Unique catalytic properties of a butoxy chain-containing ruthenated porphyrin towards oxidation of uric acid and reduction of dioxygen for visible light-enhanced fuel cells[J].Electrochimica Acta,2016,212:113-121.
[10] Chen Y W,Chen L L,Li P W,et al.Enhanced performance of microbial fuel cells by using MnO2/Halloysite nanotubes to modify carbon cloth anodes[J].Energy,2016,109:620-628.
[11] Kołodyńska D,Krukowska J,Thomas P.Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon[J].Chemical Engineering Journal,2016,307:353-363.
[12] Wang X,Gao N S J,Zhou Q X,et al.Acidic and alkaline pretreatments of activated carbon and their effects on the performance of air-cathodes in microbial fuel cells[J].Bioresource Technology,2013,144(3):632-636.
[13] Chen Z H,Li K X,Pu L T.The performance of phosphorus (P)-doped activated carbon as a catalyst in air-cathode microbial fuel cells[J].Bioresource Technology,2014,170(5):379-384.
[14] Ge B C,Li K X,Fu Z,et al.The performance of nano urchin-like NiCo2O4,modified activated carbon as air cathode for microbial fuel cell[J].Journal of Power Sources,2016,303:325-332.
[15] Pan Y P,Mo X Q,Li K X,et al.Iron-nitrogen-activated carbon as cathode catalyst to improve the power generation of single-chamber air-cathode microbial fuel cells[J].Bioresource Technology,2016,206(5):115-123.
[16] Jang I,Joo H G,Yong H J.Effects of carbon nanotubes on electrical contact resistance of a conductive Velcro system under low frequency vibration[J].Tribology International,2016,104:45-56.
[17] Khilari S,Pandit S,Das D,et al.Manganese cobaltite/polypyrrole nanocomposite-based air-cathode for sustainable power generation in the single-chambered microbial fuel cells[J].Biosensors & Bioelectronics,2014,54(12):534-540.
[18] Ghasemi M,Wan R W D,Hassan S H A,et al.Carbon nanotube/polypyrrole nanocomposite as a novel cathode catalyst and proper alternative for Pt in microbial fuel cell[J].International Journal of Hydrogen Energy,2015,41(8):4872-4878.
[19] Nguyen M T,Mecheri B,Iannaci A,et al.Iron/Polyindole-based electrocatalysts to enhance oxygen reduction in microbial fuel cells[J].Electrochimica Acta,2015,190:388-395.
[20] Tan L,Liu Z Q,Li N,et al.CuSe decorated carbon nanotubes as a high performance cathode catalyst for microbial fuel cells[J].Electrochimica Acta,2016,213:283-290.
[21] Hou Y,Yuan H Y,Wen Z H,et al.Nitrogen-doped graphene/CoNi alloy encased within bamboo-like carbon nanotube hybrids as cathode catalysts in microbial fuel cells[J].Journal of Power Sources,2016,307:561-568.
[22] Xu L,Zhang G Q,Chen J,et al.Prussian blue/graphene-modified electrode used as a novel oxygen reduction cathode in microbial fuel cell[J].Journal of the Taiwan Institute of Chemical Engineers,2015,58:374-380.
[23] Valipour A,Ayyaru S,Ahn Y.Application of graphene-based nanomaterials as novel cathode catalysts for improving power generation in single chamber microbial fuel cells[J].Journal of Power Sources,2016,327:548-556.
[24] Zhuang L,Yuan Y,Yang G Q,et al.In situ formation of graphene/biofilm composites for enhanced oxygen reduction in biocathode microbial fuel cells[J].Electrochemistry Communications,2012,21(7):69-72.
[25] Song T S,Jin Y J,Bao J J,et al.Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell[J].Journal of Hazardous Materials,2016,317:73-80.
[26] Liu Y,Liu H,Wang C,et al.Sustainable energy recovery in wastewater treatment by microbial fuel cells:Stable power generation with nitrogen-doped graphene cathode[J].Environmental Science & Technology,2013,47(23):13889-13895.
[27] Garino N,Sacco A,Castellino M,et al.Microwave-assisted synthesis of reduced graphene oxide/SnO2 nanocomposite for oxygen reduction reaction in microbial fuel cells[J].Acs Applied Materials & Interfaces,2016,8(7):4633-4643.
[28] Zhong S K,Zhou L H,Wu L,et al.Nitrogen-and boron-co-doped core-shell carbon nanoparticles as efficient metal-free catalysts for oxygen reduction reactions in microbial fuel cells[J].Journal of Power Sources,2014,272:344-350.
[29] Liu X X,Wang Y H,Dong L,et al.One-step synthesis of shell/core structural boron and nitrogen co-doped graphitic carbon/nanodiamond as efficient electrocatalyst for the oxygen reduction reaction in alkaline media[J].Electrochimica Acta,2016,194:161-167.
[30] Modi A,Singh S,Verma N.In situ nitrogen-doping of nickel nanoparticle-dispersed carbon nanofiber-based electrodes:Its positive effects on the performance of a microbial fuel cell[J].Electrochimica Acta,2016,190:620-627.
[1] 朱正雄, 王皓卿, 尚宏周, 何俊男, 张明, 袁飞. 碳纳米管基表面温敏离子印迹材料的制备及吸附性能研究[J]. 现代化工, 2018, 38(9): 113-117.
[2] 谷麟, 杨文昊, 崔建军, 张卫国, 闻海峰, 陶红. 尿素活化污泥制备生物质活性炭的研究[J]. 现代化工, 2018, 38(9): 118-121,123.
[3] 张鑫, 王永波, 王林昕, 刘恩周, 胡晓云, 樊君. 氧化石墨烯载药体系负载甲硝唑及体外释放的研究[J]. 现代化工, 2018, 38(9): 127-131.
[4] 王钊, 岳红彦, 俞泽民, 高鑫, 姚龙辉, 王宝. 化学气相沉积制备泡沫石墨烯超级电容器电极研究进展[J]. 现代化工, 2018, 38(9): 33-35,37.
[5] 张萍花, 李梦婷, 陈建钧, 王红艳, 史洪伟, 燕云洁, 姜桃. 银负载石墨烯复合材料的制备及光催化性能研究[J]. 现代化工, 2018, 38(9): 81-84,86.
[6] 郝文, 周鹏, 余昊霖, 文晓刚. SnS2纳米花/石墨烯锂离子电池负极材料合成及其电化学性能研究[J]. 现代化工, 2018, 38(8): 103-107.
[7] 蔡亭伟, 丁颖, 徐丽慧. 三维石墨烯基光催化剂的研究进展[J]. 现代化工, 2018, 38(8): 17-22.
[8] 徐晓东, 王傲生, 白云翔, 张春芳. 磁场作用下磁性碳纳米管填充自具微孔聚合物膜的氧氮渗透性能[J]. 现代化工, 2018, 38(8): 68-72.
[9] 李松原, 梁晓怿, 林云, 吕妍, 刘馥雯. 活性炭流化床对VOCs的吸附条件及吸附边界曲线的研究[J]. 现代化工, 2018, 38(8): 166-171.
[10] 林云, 梁晓怿, 李松原, 吕妍. 活性炭/聚氨酯海绵的制备工艺与吸附性能[J]. 现代化工, 2018, 38(7): 162-166.
[11] 张祎曼, 孙豫, 孙万虹, 田松. 石墨烯改性材料在气体吸附分离方面的研究进展[J]. 现代化工, 2018, 38(6): 38-42.
[12] 孙长兵, 陈思浩. 三氧化二铁和碳复合材料在锂离子电池负极中的研究新进展[J]. 现代化工, 2018, 38(6): 59-63.
[13] 许世超, 董凯, 多浩, 朱天哲, 乔阳. 基于光催化技术的VOCs空气净化器的设计及研究[J]. 现代化工, 2018, 38(6): 117-121.
[14] 黄海波, 沈勇, 杨明荣, 徐丽慧, 王黎明, 王海洋. 海胆状MnO2/RGO复合材料的制备及吸波性能研究[J]. 现代化工, 2018, 38(6): 154-157,159.
[15] 孙蒙蒙, 安立宝. 碳纳米管发热产生的影响及改善方法[J]. 现代化工, 2018, 38(5): 43-47.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn