Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2017, Vol. 37 Issue (8): 41-44    DOI: 10.16606/j.cnki.issn0253-4320.2017.08.010
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
微生物燃料电池技术的研究进展
卓露, 汪兴兴, 吕帅帅, 黄明宇, 倪红军
南通大学机械工程学院, 江苏 南通 226019
Research progress of microbial fuel cell technology
ZHUO Lu, WANG Xing-xing, LV Shuai-shuai, HUANG Ming-yu, NI Hong-jun
School of Mechanical Engineering, Nantong University, Nantong 226019, China
下载:  PDF (1236KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对MFC产电性能低下的现状,结合其发展趋势,综述了MFC工作原理及电子转移机制,分析了MFC在质子交换膜和电极材料改善等方面未来发展的主要方向及面临的问题,为提高MFC的产电性能和除污能力提供新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卓露
汪兴兴
吕帅帅
黄明宇
倪红军
关键词:  微生物燃料电池  电子转移机制  产电性能    
Abstract: In light of the current low electricity generation ability of microbial fuel cells (MFCs),combining with its development trend,the working principle and electron transfer mechanism of MFCs are reviewed.The main development direction and problems for MFCs in the improvement of proton exchange membrane and electrode materials are analyzed.This paper proposes new ideas to improve electricity generation performances and decontamination capability of MFCs.
Key words:  microbial fuel cells    electron transfer mechanism    performance of electricity generation
收稿日期:  2017-01-20                出版日期:  2017-08-20
TM911.4  
基金资助: 江苏高校优势学科建设工程资助项目(苏政办发[2014]37号);江苏省自然科学基金项目(BK20161289);南通市应用基础研究计划-工业创新项目(GY12016045,GY12015020)
通讯作者:  倪红军(1965-),男,教授,研究方向为新能源汽车和燃料电池,通讯联系人,0513-85012671,ni.hj@ntu.edu.cn。    E-mail:  ni.hj@ntu.edu.cn
作者简介:  卓露(1994-),男,硕士生
引用本文:    
卓露, 汪兴兴, 吕帅帅, 黄明宇, 倪红军. 微生物燃料电池技术的研究进展[J]. 现代化工, 2017, 37(8): 41-44.
ZHUO Lu, WANG Xing-xing, LV Shuai-shuai, HUANG Ming-yu, NI Hong-jun. Research progress of microbial fuel cell technology. Modern Chemical Industry, 2017, 37(8): 41-44.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2017.08.010  或          http://www.xdhg.com.cn/CN/Y2017/V37/I8/41
[1] 马骏,陈青青,裴一,等.微生物燃料电池各组件性能及应用研究[J].现代化工,2014,34(7):16-19.
[2] Folgosa F,Tavares P,Pereira A S.Iron management and production of electricity by microorganisms[J].Applied Microbiology & Biotechnology,2015,99(20):8329-36.
[3] Liang S,Squier T C,Zachara J M,et al.Respiration of metal (hydr) oxides by Shewanella and Geobacter:A key role for multihaem c-type Cytoch romes[J].Molecular Microbiology,2007,65(1):12-20.
[4] 严沁.产电微生物Geobacter菌毛蛋白导电功能分析[D].南京:东南大学,2015.
[5] Malvankar N S,Lovley D R.Microbial nanowires for bioenergy applications[J].Current Opinion in Biotechnology,2014,27(6):88-95.
[6] Reguera G,Mccarthy K D,Mehta T,et al.Extracellular electron transfer via microbial nanowires[J].Nature,2005,435(7045):1098-1101.
[7] Ntarlagiannis D,Atekwana E A,Hill E A,et al.Microbial nanowires:Is the subsurface "hardwired"?[J].Geophysical Research Letters,2007,34(17):17305.
[8] Milliken C E,May H D.Sustained generation of electricity by the spore-forming,gram-positive,desulfitobacterium hafniense strain DCB2[J].Appl Microbiol Biotechnol,2007,(73):1180-1189.
[9] 孔维芳,郭庆杰,王许云.不同介体厌氧流化床微生物燃料电池产电特性研究[J].高校化学工程学报,2011,25(5):858-863.
[10] Tanaka K,Vega C A,Tamamushi R.Thionine and ferric chelate compounds as coupled mediators in microbial fuel cells[J].Bioelectrochemistry & Bioenergetics,1983,11(4/5/6):289-297.
[11] Lovley D R,Stolz J F,Nord G L,et al.Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism[J].Nature,1987,330(6145):252-254.
[12] Borgwardt L,Hojgaard L,Carstensen H,et al.Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and PTFE) in single chamber microbial fuel cells[J].Environmental Science & Technology,2006,40(1):364-369.
[13] Bond D R,Lovley D R.Evidence for involvement of an electron shuttle in electricity generation by geothrix fermentans[J].Applied & Environmental Microbiology,2004,71(4):2186-2189.
[14] Park D H,Laivenieks M,Guettler M V,et al.Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production[J].Applied & Environmental Microbiology,1999,65(7):2912-2917.
[15] Wang Z L,Wu W.ChemInform abstract:Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems[J].ChemInform,2013,44(7):11700-11721.
[16] 孔晓英,李连华,马隆龙,等.不同膜微生物燃料电池的性能[J].太阳能学报,2012,33(5):882-886.
[17] Sevda S,Dominguez-Benetton X,Vanbroekhoven K,et al.Characterization and comparison of the performance of two different separator types in air-cathode microbial fuel cell treating synthetic wastewater[J].Chemical Engineering Journal,2013,228(15):1-11.
[18] 谢倍珍,刘博杰,杨少强,等.生物阴极式碳纸隔膜微生物燃料电池的反硝化和产电性能[J].环境工程学报,2014,8(6):2163-2168.
[19] 姚森,何雅玲,席奂,等.膨体聚四氟乙烯膜的亲水改性及其在微生物燃料电池中的应用[J].工程热物理学报,2014,35(12):2504-2507.
[20] 王健,宰学荣,刘建敏,等.海底微生物燃料电池聚吡咯/多壁碳纳米管复合改性阳极及电化学性能[J].材料开发与应用,2015,30(3):61-67.
[21] 邹晓娜,宰学荣,付玉彬,等.氧化石墨烯/萘醌改性海泥电池阳极的研究[J].现代化工,2015,35(8):79-83.
[22] Wei G,Cui Y,Hong S,et al.Layer-by-layer construction of graphene-based microbial fuel cell for improved power generation and methyl orange removal[J].Bioprocess & Biosystems Engineering,2014,37(9):1749-1758.
[23] 葛安东,秦文,靳琼.自制涂层三维阳极MFC产电性能研究[J].电源技术,2016,40(1):94-96.
[24] Zhao Y,Watanabe K,Nakamura R,et al.Three-dimensional conductive nanowire networks for maximizing anode performance in microbial fuel cells[J].Chemistry-A European Journal,2010,16(17):4982-4985.
[25] Ghasemi M,Wan R W D,Rahimnejad M,et al.Copper-phthalocyanine and nickel nanoparticles as novel cathode catalysts in microbial fuel cell[J].International Journal of Hydrogen Energy,2013,38(22):9533-9540.
[26] 袁浩然,邓丽芳,黄宏宇,等.MnO2为阴极催化剂的微生物燃料电池处理城市垃圾渗滤液研究[J].太阳能学报,2014,35(9):1715-1722.
[27] 樊立萍,郑钰姣.生物阴极微生物燃料电池餐饮废水处理与发电性能研究[J].能源与环境,2015,(6):74-75.
[28] Ghasemi M,Wan R W D,Rahimnejad M,et al.Copper-phthalocyanine and nickel nanoparticles as novel cathode catalysts in microbial fuel cells[J].International Journal of Hydrogen Energy,2013,38(22):9533-9540.
[29] Liew K B,Wan R W D,Ghasemi M,et al.Manganese oxide/functionalised carbon nanotubes nanocomposite as catalyst for oxygen reduction reaction in microbial fuel cell[J].International Journal of Hydrogen Energy,2015,40(35):11625-11632.
[1] 原诗瑶, 侯彬, 周杰. 泡沫镍在电容器和微生物燃料电池方面的应用[J]. 现代化工, 2017, 37(8): 67-71.
[2] 孙瑶, 赵金辉, 姜成, 吴梦柯, 谢西, 林晨彤. 人工湿地-微生物燃料电池耦合系统的研究现状与展望[J]. 现代化工, 2017, 37(8): 60-63.
[3] 康冰艳, 侯彬, 卢新陈. 微生物燃料电池阴极碳载体催化剂的研究进展[J]. 现代化工, 2017, 37(8): 55-59.
[4] 薄涛, 翟洪艳, 季民. 微生物电解池在氢气制备中的应用[J]. 现代化工, 2017, 37(8): 50-54.
[5] 王丽, 李雪, 王琳. 湿地型微生物燃料电池处理废水及同步产电研究[J]. 现代化工, 2017, 37(6): 154-157.
[6] 倪红军, 陈祥, 汪兴兴, 陈青青, 吕帅帅. 微生物燃料电池中产电微生物的研究进展[J]. 现代化工, 2017, 37(3): 46-49.
[7] 范方舟, 翟洪艳, 季民. 微生物燃料电池在治污产能方面的研究进展[J]. 现代化工, 2015, 35(12): 19-23.
[8] 向龙, 王晓慧, 海热提, 刘睿, 付进南, 李媛, 徐梦莹. 微生物燃料电池阳极材料的修饰研究进展[J]. 现代化工, 2015, 35(1): 48-52.
[9] 马骏, 陈青青, 裴一, 倪红军. 微生物燃料电池各组件性能及应用研究[J]. 现代化工, 2014, 34(7): 16-19.
[10] 陈杰, 李超超, 方星亮, 羊家威, 成少安. 微生物燃料电池空气阴极和扩大化的研究进展[J]. 现代化工, 2014, 34(10): 16-21.
[11] 范德玲,王利勇,陈英文,祝社民,沈树宝. 微生物燃料电池最新研究进展[J]. , 2011, 31(6): 0-0.
[12] 温青,孙茜,赵立新,吴英. 微生物燃料电池对废水中对硝基苯酚的去除[J]. , 2009, 29(4): 0-0.
[13] 赵立新,孔凡英,王宣,温青,孙茜,吴英. 微生物燃料电池处理含铬废水并同步产电[J]. , 2009, 29(11): 0-0.
[14] 宋天顺,晏再生,胡颖,江和龙. 沉积物微生物燃料电池修复水体沉积物研究进展[J]. , 2009, 29(11): 0-0.
[15] 詹亚力,王琴,王靖,闫光绪,郭绍辉. 微生物燃料电池的基础研究[J]. , 2008, 28(6): 0-0.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn