Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2019, Vol. 39 Issue (3): 223-226    DOI: 10.16606/j.cnki.issn0253-4320.2019.03.051
  信息技术应用 本期目录 | 过刊浏览 | 高级检索 |
低共熔溶剂萃取精馏分离乙醇-水共沸物的研究
王祥祥, 韩东敏, 张倩, 郭莉莉, 王硕
中国石油大学胜利学院化学工程学院, 山东 东营 257061
Extractive distillation of ethanol-water azeotrope with low transition temperature mixtures
WANG Xiang-xiang, HAN Dong-min, ZHANG Qian, GUO Li-li, WANG Shuo
School of Chemical Engineering, Shengli College, China University of Petroleum, Dongying 257061, China
下载:  PDF (1422KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 分别以氯化胆碱/甘油(摩尔比为1∶2)低共熔溶剂(Reline)和乙二醇为萃取剂,对乙醇脱水萃取精馏过程进行模拟研究,并以最小年度总费用TAC为目标函数,对2种工艺流程进行优化,得到了最优的操作条件。结果表明,与乙二醇萃取精馏流程相比,Reline萃取精馏中萃取剂用量降低20%,能耗费用降低21.68%,年度总费用TAC降低19.66%,具有明显的节能优势。对Reline常规萃取精馏进行节能研究,发现对该流程进行换热网络优化后,可使年总费用TAC下降7.95%;而隔壁塔并不能降低整个过程的年总费用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王祥祥
韩东敏
张倩
郭莉莉
王硕
关键词:  低共熔溶剂  萃取精馏  无水乙醇  Aspen Plus  节能    
Abstract: The separation of ethanol and water by extractive distillation is designed and simulated by Aspen Plus with low transition temperature mixtures (LTTMs,choline chloride/urea=1:2) and ethylene glycol as extractant,respectively.Also,the minimal total annual cost (TAC) is used as the objective function to find the optimal design for these two extractive distillation systems.The results show that compared with ethylene glycol process,the usage amount of extractant in LTTMs process is 20% less,the operation cost is 21.68% lower and the total annual cost is 19.66% lower,indicating an economic advantage.In order to reduce TAC of the LTTMs extractive distillation process,various measures are taken.After the heat exchange network is optimized,TAC can be reduced by 7.95%.However,the extractive dividing wall column distillation process cannot be helpful to reduce TAC by using such measurement.The results provide a design reference and theory basis for the industrial design of extractive distillation process to separate ethanol and water mixture.
Key words:  low transition temperature mixtures    extractive distillation    absolute ethanol    Aspen Plus    energy conservation
收稿日期:  2018-08-22      修回日期:  2019-01-02           出版日期:  2019-03-20
ZTFLH:  TQ028.3  
通讯作者:  韩东敏(1989-),女,硕士,讲师,从事化工传质与分离的研究,通讯联系人,0546-7396241,dongminzi@126.com。    E-mail:  dongminzi@126.com
作者简介:  王祥祥(1996-),男,本科生
引用本文:    
王祥祥, 韩东敏, 张倩, 郭莉莉, 王硕. 低共熔溶剂萃取精馏分离乙醇-水共沸物的研究[J]. 现代化工, 2019, 39(3): 223-226.
WANG Xiang-xiang, HAN Dong-min, ZHANG Qian, GUO Li-li, WANG Shuo. Extractive distillation of ethanol-water azeotrope with low transition temperature mixtures. Modern Chemical Industry, 2019, 39(3): 223-226.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2019.03.051  或          http://www.xdhg.com.cn/CN/Y2019/V39/I3/223
[1] Peng Y,Lu X Y,Liu B J,et al.Separation of azeotropic mixtures (ethanol and water) enhanced by deep eutectic solvents[J].Fluid Phase Equilibr,2017,448:128-134.
[2] Rodriguez N R,Gonzalez A S B,Tijssen P M A,et al.Low transition temperature mixtures (LTTMs) as novel entrainers in extractive distillation[J].Fluid Phase Equilibr,2015,385:72-78.
[3] Kumar S,Singh N,Prasad R.Anhydrous ethanol:A renewable source of energy[J].Renew Sust Energ Rev,2010,14:1830-1844.
[4] Zhu Z Y,Ri Y S,Jia H,et al.Process evaluation on the separation of ethyl acetate and ethanol using extractive distillation with ionic liquid[J].Sep Purif Technol,2017,181:44-52.
[5] 林子昕,安星,安维中,等.萃取精馏制取无水乙醇过程不同节能方案的对比[J].化工进展,2018,37(5):2016-2022.
[6] 冯树波,赵亚男.萃取精馏沸点对萃取精馏制取无水乙醇总能耗的影响分析[J].计算机与应用化工,2015,32(7):851-854.
[7] Gjineci N,Boli E,Tzani A,et al.Seperation of the ethanol/water azetropic mixture using ionic liquids and deep eutectic solvents[J].Fluid Phase Equilibria,2016,424:1-7.
[8] 李静,王克良,连明磊,等.[DMIM]MS萃取精馏制取无水乙醇的过程模拟[J].现代化工,2018,38(2):20-24.
[9] Francisco M,Gonzalez A S B,Kroon M C,et al.Comparison of a low transition temperature mixture (LTTM) formed by lactic acid and choline chloride with choline lactate ionic liquid and the choline chloride salt:Physical properties and vapour-liquid equilibria of mixtures containing water and ethanol[J].RSC Adv,2013,3:23553-23561.
[10] Rodriguez N R,Gonzalez A S B,Kroon M C,et al.Low transition temperature mixtures (LTTMs) as novel entrainers in extractive distillation[J].Fluid Phase Equilibr,2015,385:72-78.
[11] 章连众,邓东顺,张卫东,等.低共熔溶剂存在下醇水共沸体系气液相平衡[C].中国化学会第十七届全国化学热力学和热分析学术会议,2014.
[12] Leron R B,Li M H.Molar heat capacities of choline chloride-based deep eutectic solvents and their binary mixtures with water[J].Thermochimica Acta,2012,530:52-57.
[13] Mirza N R,Nicholas N J,Wu Y,et al.Estimation of normal boiling temperatures,critical properties,and acentric factors of deep eutectic solvents[J].J Chem Eng Data,2015,60:1844-1854.
[14] Zhang H,Ye Q,Qin J W,et al.Design and control of extractive dividing-wall column for separating ethyl acetate-isopropyl alcohol mixture[J].Industrial & Engineering Chemical Research,2014,53:1189-1205.
[1] 孙进超, 胡明圆, 许文友, 田晖. 催化精馏合成甲酸环己酯-乙酸环己酯联产过程模拟计算及优化[J]. 现代化工, 2019, 39(3): 215-218.
[2] 任琪, 秦俏, 张建海, 仇汝臣. 丙酮-氯仿萃取精馏分离工艺优化研究[J]. 现代化工, 2019, 39(3): 219-222.
[3] 李嘉骊, 王旭忠, 顾兴坤. 余隙无级调节气量节能技术在重整装置循环氢压缩机上的应用[J]. 现代化工, 2019, 39(3): 206-209.
[4] 罗祖云, 李媛媛, 洪若瑜, 林荣英. 硫化氢废气生产四氢噻吩工艺设计[J]. 现代化工, 2019, 39(2): 207-210,212.
[5] 申晓冰. 鲁奇气化中含酚废水处理技术[J]. 现代化工, 2019, 39(2): 192-194.
[6] 李文秀, 陈金玲, 张弢. 萃取精馏分离苯-异丙醇共沸体系的模拟[J]. 现代化工, 2019, 39(2): 211-214.
[7] 温国贤, 曹晓艳, 顾正桂. 分离C13~C16正构烷烃体系的模拟与试验研究[J]. 现代化工, 2019, 39(1): 227-230.
[8] 杨雄武, 戴咏川, 孙大力. 基于Aspen Plus联产MTBE及烷基化油的工艺流程模拟[J]. 现代化工, 2019, 39(1): 213-216,218.
[9] 刘艳杰, 王犇, 潘高峰. 乙酸异丙酯回收工艺模拟与优化[J]. 现代化工, 2018, 38(9): 215-218.
[10] 范峥, 姬盼盼, 林亮, 刘钊, 井晓燕, 员汝娜. 天然气液化工艺系统模拟与节能优化[J]. 现代化工, 2018, 38(9): 219-223.
[11] 金兆荣, 侯峰, 徐宏. 基于Aspen Plus的热等离子体气化含油污泥的模拟研究[J]. 现代化工, 2018, 38(9): 224-228.
[12] 杨兵兵, 李扬, 范赢, 孙姣, 陈文义. 隔壁塔分离乙醇-正丙醇-正丁醇体系[J]. 现代化工, 2018, 38(8): 217-220,222.
[13] 何英华, 朱丽娜, 刘龙, 孙维, 张德顺. 溶剂脱沥青改质技术处理加拿大油砂沥青模拟研究[J]. 现代化工, 2018, 38(8): 227-230.
[14] 田伟, 阎富生, 黄永红, 李亚晴, 杜圣飞, 梁丕荣. 碱土金属对石油焦直接制氢的模拟分析[J]. 现代化工, 2018, 38(7): 208-213.
[15] 韩淑萃, 杨金杯. 丙酸甲酯和甲醇共沸物萃取精馏分离工艺的研究[J]. 现代化工, 2018, 38(7): 214-218.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 56 -60 .
[2] . [J]. Modern Chemical Industry, 2016, 36(1): 176 -179 .
[3] . [J]. , 2011, 31(1): 0 .
[4] . [J]. , 2003, 23(2): 0 .
[5] . [J]. , 2011, 31(5): 0 .
[6] . [J]. , 2011, 31(10): 0 .
[7] . [J]. , 2009, 29(3): 0 .
[8] . [J]. , 2010, 30(2): 0 .
[9] . [J]. , 2010, 30(5): 0 .
[10] . [J]. , 2010, 30(8): 0 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn