Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2019, Vol. 39 Issue (3): 96-99    DOI: 10.16606/j.cnki.issn0253-4320.2019.03.021
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
硅烷季铵盐改性纳米二氧化硅颗粒表面性质及泡沫能力评价
孙傲1, 刘庆旺1, 郭建设1, 范振忠1, 王继刚1, 尉小明2
1. 东北石油大学石油工程学院, 黑龙江 大庆 163318;
2. 国家能源稠(重)油开采研发中心, 辽宁 盘锦 124000
Evaluation of surface properties and foam capacity of nano silica particles modified by silane quaternary ammonium salt
SUN Ao1, LIU Qing-wang1, GUO Jian-she1, FAN Zhen-zhong1, WANG Ji-gang1, WEI Xiao-ming2
1. School of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China;
2. National Energy Research and Development Center of Heavy Oil, Panjin 124000, China
下载:  PDF (2973KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以气相二氧化硅为原料,利用3-氯丙基三甲氧基硅烷及其衍生季铵盐对纳米二氧化硅颗粒进行改性,得到一系列与不同链长硅氧烷偶联的改性纳米二氧化硅颗粒,并对二氧化硅颗粒的表面性质以及泡沫性质进行研究。结果表明,经过改性后的纳米二氧化硅颗粒具有更优良的分散性质,团聚粒径由未改性时的459 nm减小至改性后的255 nm;纳米二氧化硅颗粒涂层的水接触角实验表明,硅烷偶联剂的碳链长度与颗粒接触角存在关联,并且接触角接近90°的颗粒对月桂酰胺丙基甜菜碱起泡剂的稳泡效果越好,降低起泡剂溶液表面张力的能力也越强。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙傲
刘庆旺
郭建设
范振忠
王继刚
尉小明
关键词:  纳米二氧化硅  硅烷季铵盐  团聚形态  接触角  稳泡能力    
Abstract: Fumed silica is modified by 3-chloropropyl trimethoxysilane and its derivative quaternary ammonium salt to obtain a series of modified nano silica particles coupling with siloxane with different chain length.The surface properties and foam properties of modified nano silica particles are studied.The results show that the modified nano silica particles have better dispersion properties than before modification.The dynamic light scattering (DLS) results show that the size of agglomeration decreases to 255 nm from 459 nm for unmodified one.The water contact angles experiment discloses that the contact angle is related to the carbon chains length of silane coupling agent.Meanwhile,the particles with a contact angle close to 90° can bring to a better foam stabilization efficiency to lauryl propyl betaine and has a stronger ability to cut down surface tension of foaming agent solution.
Key words:  nano silica particles    silane quaternary ammonium salt    agglomeration form    contact angle    foam stabilization ability
收稿日期:  2018-06-27      修回日期:  2019-01-14           出版日期:  2019-03-20
ZTFLH:  TE39  
基金资助: 国家科技重大专项(2016ZX05002006)
通讯作者:  郭建设(1970-),男,硕士,高级工程师,研究方向为油气田开发,通讯联系人,shimj08@163.com。    E-mail:  shimj08@163.com
作者简介:  孙傲(1989-),男,博士生,研究方向为油气井工作液化学的研究,sunsunaoao@126.com
引用本文:    
孙傲, 刘庆旺, 郭建设, 范振忠, 王继刚, 尉小明. 硅烷季铵盐改性纳米二氧化硅颗粒表面性质及泡沫能力评价[J]. 现代化工, 2019, 39(3): 96-99.
SUN Ao, LIU Qing-wang, GUO Jian-she, FAN Zhen-zhong, WANG Ji-gang, WEI Xiao-ming. Evaluation of surface properties and foam capacity of nano silica particles modified by silane quaternary ammonium salt. Modern Chemical Industry, 2019, 39(3): 96-99.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2019.03.021  或          http://www.xdhg.com.cn/CN/Y2019/V39/I3/96
[1] Arzhavitina A,Steckel H.Foams for pharmaceutical and cosmetic application[J].International Journal of Pharmaceutics,2010,394(1):1-17.
[2] Kärrman A,Elgh-Dalgren K,Lafossas C,et al.Environmental levels and distribution of structural isomers of perfluoroalkyl acids after aqueous fire-fighting foam (AFFF) contamination[J].Environmental Chemistry,2013,8(4):372-380.
[3] Cassanelli M,Prosapio V,Norton I,et al.Acidified/basified gellan gum gels:The role of the structure in drying/rehydration mechanisms[J].Food Hydrocolloids,2018,82:346-354.
[4] Rodrigo A Grau,Janusz S Laskowski.Role of frothers in bubble generation and coalescence in a mechanical flotation cell[J].The Canadian Journal of Chemical Engineering,2006,84(2):170-182.
[5] Li R F,Yan W,Liu S,et al.Foam mobility control for surfactant enhanced oil recovery[J].SPE Journal,2010,15(4):928-942.
[6] Ramsden W.Separation of solids in the surface-layers of solutionsand ‘suspensions’[J].Proc R Soc London,1903,72:156-164.
[7] Pickering S U.CXCVI.-Emulsion[J].Journal of Chemistry Science,1907,91:2001-2021.
[8] 陈洪龄,吴玮.颗粒稳定乳液和泡沫体系的原理和应用(Ⅰ)——Pickering乳液的稳定机制和影响因素[J].日用化学工业,2013,43(1):10-15.
[9] Horozov T S,Aveyard R,Clint J H,et al.Particle zips:Vertical emulsion films with particle monolayers at theirsurfaces[J].Langmuir,2005,21(6):2330-2341.
[10] Horozov T S.Foams and foam films stabilised by solidparticles[J].Current Opinion in Colloid & Interface Science,2008,13(3):134-140.
[11] Hariz T R.Nanoparticle-stabilized CO2 foams for potential mobility control applications[D].Austin:The University of Texas,2012.
[12] Espinosa D,CaldelasF,Johnston K,et al.Nanoparticle-stabilized supercritical CO2 foams for poten-tial mobility control applications[R].SPE 129925,2010.
[13] 李兆敏,王鹏,李松岩,等.纳米颗粒提高二氧化碳泡沫稳定性的研究进展[J].西南石油大学学报(自然科学版),2014,36(4):155-161.
[14] 孙乾,李兆敏,李松岩,等.添加纳米SiO2颗粒的泡沫表面性质及调剖性能[J].中国石油大学学报(自然科学版),2016,40(6):101-108.
[15] 孙乾,李兆敏,李松岩,等.SiO2纳米颗粒稳定的泡沫体系驱油性能研究[J].中国石油大学学报(自然科学版),2014,38(4):124-131.
[16] 王刚,王克亮,逯春晶,等.Janus颗粒的制备及泡沫性能[J].高等学校化学学报,2018,39(5):990-995.
[17] 杨辉,陈飞.乙烯基三甲氧基硅烷对二氧化硅的超疏水改性研究[J].人工晶体学报,2015,44(9):2597-2605.
[18] 袁文俊,周勇敏.纳米颗粒团聚的原因及解决措施[J].材料导报,2008,22(S3):59-61.
[19] Katherine Kho,Kunn Hadinoto.Aqueous re-dispersibilitycharacterization of spray-dried hollow spherical silica nano-aggregates[J].Powder Technology,2009,198(3):354-363.
[20] Aroonsri A,Worthen A J,Hariz T,et al.Conditions forgenerating nanoparticle-stabilized CO2 foams in fractureand matrix flow[C].SPE 166319,2013.
[1] 王传奇, 花立业, 杨震宇, 高祎勋, 陈碧莹, 戴玉华. 聚丙烯酰胺交联固体膜的制备与性能研究[J]. 现代化工, 2019, 39(3): 148-151,153.
[2] 张绒, 李小瑞, 马国艳. 烃溶性丙烯酸酯共聚物的制备及性能表征[J]. 现代化工, 2018, 38(1): 141-144.
[3] 魏要丽, 杨亮. 等离子喷涂制备超疏水镀层的研究[J]. 现代化工, 2015, 35(9): 67-68,70.
[4] 李楠, 陈晔. 纳米改性有机硅环氧耐粘附涂层的制备[J]. 现代化工, 2015, 35(9): 93-96.
[5] 于慧, 宋杰, 李强, 张梦, 吴非洋, 潘献辉. 膜亲水性测试方法的研究进展[J]. 现代化工, 2015, 35(6): 176-179.
[6] 丁云飞, 伍彬, 吴会军. 基于模板热压法制备超疏水柱状结构表面[J]. 现代化工, 2014, 34(11): 65-68.
[7] 夏宇正,朱巍,石淑先,陈晓农. 硅酸四乙酯存在下的丙烯酸酯无皂乳液聚合[J]. , 2010, 30(4): 0-0.
[8] 王士财,李宝霞,张晓东. 纳米二氧化硅增强异氰脲酸酯三聚体改性聚氨酯复合材料的研究[J]. , 2008, 28(5): 0-0.
[9] 李正军,丁克毅,林芳,张廷有. 水性含氟丙烯酸酯共聚物的疏水性研究[J]. , 2007, 27(6): 0-0.
[10] 郭刚 于杰 罗筑 熊玉竹 涂铭旌. 纳米SiO2粒子与聚烯烃弹性体协同改性聚丙烯的研究[J]. , 2004, 24(7): 0-0.
[1] . [J]. , 2011, 31(1): 0 .
[2] . [J]. , 2011, 31(1): 0 .
[3] . [J]. Modern Chemical Industry, 2017, 37(2): 107 -111 .
[4] . [J]. Modern Chemical Industry, 2017, 37(2): 133 -136 .
[5] . [J]. Modern Chemical Industry, 2017, 37(6): 5 -7 .
[6] . [J]. Modern Chemical Industry, 2017, 37(6): 201 -204 .
[7] . [J]. , 2002, 22(3): 0 .
[8] . [J]. , 2002, 22(4): 0 .
[9] . [J]. , 2002, 22(12): 0 .
[10] . [J]. , 2003, 23(4): 0 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn