Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2019, Vol. 39 Issue (3): 59-63    DOI: 10.16606/j.cnki.issn0253-4320.2019.03.013
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
MOFs改性衍生物光催化材料研究进展
李震东1, 张仕龙1, 王振华1,2, 符春林1,2
1. 重庆科技学院冶金与材料工程学院, 重庆 401331;
2. 纳微复合材料与器件重庆市重点实验室, 重庆 401331
Research progress in using MOFs modified derivatives as photocatalytic materials
LI Zhen-dong1, ZHANG Shi-long1, WANG Zhen-hua1,2, FU Chun-lin1,2
1. School of Metallurgy and Materials Engineering, Chongqing University of Science & Technology, Chongqing 401331, China;
2. Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing 401331, China
下载:  PDF (3224KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 综述了近年来通过金属离子掺杂、对有机配体修饰、与其他材料复合等手段获得的MOFs衍生物在光催化领域的研究进展,总结了目前存在的问题及未来发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李震东
张仕龙
王振华
符春林
关键词:  光催化  金属有机骨架化合物  光催化活性  MOFs衍生物    
Abstract: This review mainly focuses on the latest researches in the photocatalytic applications of MOFs derivatives that are obtained by means of doping metal ions,modifying organic ligands and compounding with other materials.It also summarizes the current problems and the future development directions.
Key words:  photocatalytic    metal organic framework compounds    photocatalytic activity    MOFs derivatives
收稿日期:  2018-08-15      修回日期:  2018-12-28           出版日期:  2019-03-20
ZTFLH:  O643.36  
  O644.1  
  X703  
基金资助: 重庆高校创新团队建设计划资助项目(CXTDX2016010032);重庆科技学院研究生科技创新项目(YKJCX1720210)
通讯作者:  符春林(1970-),男,博士,教授,研究方向为电子材料及元器件,通讯联系人,chlfu@126.com。    E-mail:  chlfu@126.com
作者简介:  李震东(1994-),男,硕士生
引用本文:    
李震东, 张仕龙, 王振华, 符春林. MOFs改性衍生物光催化材料研究进展[J]. 现代化工, 2019, 39(3): 59-63.
LI Zhen-dong, ZHANG Shi-long, WANG Zhen-hua, FU Chun-lin. Research progress in using MOFs modified derivatives as photocatalytic materials. Modern Chemical Industry, 2019, 39(3): 59-63.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2019.03.013  或          http://www.xdhg.com.cn/CN/Y2019/V39/I3/59
[1] Fujishima A,Honda K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238(5358):37-38.
[2] Dafare S,Deshpande P S,Bhavsar R S.Photocatalytic degradation of congo red dye on combustion synthesised Fe2O3[J].Indian Journal of Chemical Technology,2013,20(6):406-410.
[3] Luo J,Hepel M.Photoelectrochemical degradation of naphthol blue black diazo dye on WO film electrode[J].Electrochimica Acta,2002,46(19):2913-2922.
[4] Yan H J,Yang J H,Li C,et al.Visible-light-driven hydrogen production with extremely high quanturn efficiency on Pt-PdS/CdS photocatalyst[J].Journal of Catalysis,2009,266(2):165-168.
[5] Ragon F,Campo B,Yang Q,et al.Acid-functionalized UiO-66(Zr) MOFs and their evolution after intra-framework cross-linking:Structural features and sorption properties[J].Journal of Materials Chemistry A,2015,3(7):3294-3309.
[6] Angulo-Ibáñez A,Beobide G,Castillo O,et al.Aerogels of 1D coordination polymers:from a non-porous metal-organic crystal structure to a highly porous material[J].Polymers,2016,8(1):16-27.
[7] Zhang T,Lin W.Metal-organic frameworks for artificial photosynthesis and photocatalysis[J].Chemical Society Reviews,2014,43(16):5982-5993.
[8] Gonthina H,Sreedhar G,Rao B V.Photo-catalytic behavior of CdSe QDs sensitizedZr-(1,3,5-benzene tricarboxylic acid) metal-organic frameworks[J].International Journal of Advanced Research,2017,5(4):251-261.
[9] Corma A,Garcia H,Xamena F X,et al.Engineering metal organic frameworks for heterogeneous catalysis[J].Chemical Reviews,2010,110(8):4606-4655.
[10] Eddaoudi M,Kim J,Rosi N L,et al.Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J].Science,2002,295(5554):469-472.
[11] Xamena F X L I,Corma A,Garcia H.Applications for metal-organic framework (MOFs) as quanturn dot scmiconductors[J].J Phys Chem C,2007,111(1):80-85.
[12] Férey G,Serre C,Mellot-Draznieks C,et al.A hybrid solid with giant pores prepared by a combination of targeted chemistry,simulation,and powder diffraction[J].Angew Chem Int Ed,2004,43(46):6296-6301.
[13] Ferey G,Mellot-Draznieks C,Dutour J,et al.A chromium terephthalate-based solid with unusually large pore volumes and surface area[J].Science,2005,309(5751):2040-2042.
[14] Wang D,Wang M,Li Z,et al.Fe-based metal-organic frameworks for highly selective photocatalytic benzene hydroxylation to phenol[J].ACS Catalysis,2015,5(11):6852-6857.
[15] Pu S,Xu L,Sun L,et al.Tuning the optical properties of the zirconium-UiO-66 metal-organic framework for photocatalytic degradation of methyl orange[J].Inorganic Chemistry Communications,2015,52(56):50-52.
[16] Yuan Y P,Yin L S,Cao S W,et al.Improving photocatalytic hydrogen production of metal-organic framework UiO-66 octahedrons by dye-sensitization[J].Applied Catalysis B Environmental,2015,168(169):572-576.
[17] Yang H,He X W,Wang F,et al.Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye[J].Journal of Materials Chemistry,2012,22(41):21849-21851.
[18] 王奥宁,周莹杰,汪舟鹭,等.Zr基金属-有机配合物UIO-66的改性及光催化性能[J].南京工业大学学报:自科版,2017,39(6):12-18.
[19] Xu X,Cui Z P,Gao X.Photocatalytic activity of transition-metal-ion-doped coordination polymer (CP):photoresponse region extension and quantum yields enhancement via doping of transition metal ions into the framework of CPs[J].Dalton Transactions,2014,43(23):8805-8813.
[20] Wang F,Xu K,Jiang Z,et al.A multifunctional zinc-based metal-organic framework for sensing and photocatalytic applications[J].Journal of Luminescence,2018,194:22-28.
[21] Fei H,Sampson M D,Lee Y,et al.Photocatalytic CO2 reduction to formate using a Mn(Ⅰ) molecular catalyst in a robust metal-organic framework[J].Inorganic Chemistry,2015,54(14):6821-6829.
[22] Shi L,Wang T,Zhang H,et al.An amine-functionalized Iron(Ⅲ) metal-organic framework as efficient visible-light photocatalyst for Cr(Ⅵ) reduction[J].Advanced Science,2015,2(3):1-8.
[23] Gomes S C,Luz I,Llabrés F X,et al.Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation[J].Chemistry,2010,16(36):11133-11141.
[24] Patwardhan S,Schatz G C.Theoretical investigation of charge transfer in metal organic frameworks for electrochemical device applications[J].Journal of Physical Chemistry C,2015,119(43):24238-24247.
[25] 陈琪,费霞,何琴琴,等.MIL-101/P25复合材料的制备及光催化性能[J].无机化学学报,2014,30(5):993-1000.
[26] Liu F,Fan F,Yucui L,et al.Research progress on photocatalytic degradation of organic pollutants by graphene/TiO2 composite materials[J].Ciesc Journal,2016,5(5):1635.
[27] Zhang C H,Ai L H,Jiang J,et al.Graphene hybridized photoactive iron terephthalate with enhanced photocatalytic activity for the degradation of rhodamine B under visible light[J].Industrial & Engineering Chemistry Research,2015,54(1):153-163.
[28] Bu Y,Li F,Zhang Y,et al.Immobilizing CdS nanoparticles and MoS2/RGO on Zr-based metal-organic framework 12-tungstosilicate@UiO-67 toward enhanced photocatalytic H2 evolution[J].Rsc Advances,2016,6(46):40560-40566.
[1] 方书起, 曹奇, 常春, 陈俊英. 以TiO2为光催化剂的反应器结构研究进展[J]. 现代化工, 2019, 39(3): 45-50.
[2] 王美城, 王敏, 张宇州, 姚思聪, 王军荣, 陈尧. 页岩气产出水的可行性处理工艺研究[J]. 现代化工, 2019, 39(3): 198-201.
[3] 邹平, 任志豪, 朱鹏飞, 谢蕊蔓, 缑艳霞, 张琦. 磁性可见光催化剂Ce-BiVO4/Fe3O4的制备及性能研究[J]. 现代化工, 2019, 39(2): 83-87.
[4] 盛宇, 徐丽慧, 沈勇, 王黎明, 潘虹. 疏水型SiO2/TiO2复合气凝胶的制备及光催化性能研究[J]. 现代化工, 2019, 39(2): 98-102.
[5] 付孝锦, 张丽, 胡玉婷, 郑小刚, 刘勇. SmVO4/g-C3N4异质结复合物对罗丹明B光催化性能研究[J]. 现代化工, 2019, 39(1): 138-143.
[6] 姜巧娟, 李华, 刘彦平, 郑先君, 付长亮, 刘从军. Pt/TiO2的制备及其在利用废水中有机酸产氢中的性能研究[J]. 现代化工, 2018, 38(9): 160-163.
[7] 张萍花, 李梦婷, 陈建钧, 王红艳, 史洪伟, 燕云洁, 姜桃. 银负载石墨烯复合材料的制备及光催化性能研究[J]. 现代化工, 2018, 38(9): 81-84,86.
[8] 陈昕海, 陈星, 李廷真. Nd-Er/ZnO-TiO2光催化剂对2,4-DCP的光催化降解研究[J]. 现代化工, 2018, 38(8): 152-156.
[9] 牛凤兴, 陈晨, 陈钰, 高晓明. 水热法制备Co/ZnO及其光催化降解邻苯二酚的研究[J]. 现代化工, 2018, 38(8): 99-102,104.
[10] 蔡亭伟, 丁颖, 徐丽慧. 三维石墨烯基光催化剂的研究进展[J]. 现代化工, 2018, 38(8): 17-22.
[11] 于露, 翟宏菊, 关壬铨, 常立民, 吴佳珆. 银基复合材料光催化性能研究新进展[J]. 现代化工, 2018, 38(7): 40-43.
[12] 代岩, 王硕, 田黎明, 肖武. FePc-TiO2/CS复合材料制备及光催化降解染料废水[J]. 现代化工, 2018, 38(7): 89-92.
[13] 赵帅, 刘亚亚, 马博文, 沈健. TiO2-β/SBA-15复合分子筛光催化氧化脱硫[J]. 现代化工, 2018, 38(7): 145-149.
[14] 许世超, 董凯, 多浩, 朱天哲, 乔阳. 基于光催化技术的VOCs空气净化器的设计及研究[J]. 现代化工, 2018, 38(6): 117-121.
[15] 赵艳艳, 梁旭华, 邓寒霜, 李筱玲. g-C3N4光催化材料的制备及降解水中头孢曲松钠[J]. 现代化工, 2018, 38(6): 128-132.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 37 -40,42 .
[2] . [J]. Modern Chemical Industry, 2016, 36(1): 93 -97 .
[3] . [J]. Modern Chemical Industry, 2016, 36(2): 3 -6 .
[4] . [J]. , 2002, 22(6): 0 .
[5] . [J]. , 2002, 22(12): 0 .
[6] . [J]. , 2003, 23(3): 0 .
[7] . [J]. , 2009, 29(11): 0 .
[8] . [J]. , 2010, 30(7): 0 .
[9] . [J]. , 2010, 30(12): 0 .
[10] . [J]. , 2007, 27(2): 0 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn