Please wait a minute...
 
最新公告: 2018年3月网站服务时间变更通知   春节放假通知   关于寒假期间版面费发票延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (9): 28-32    DOI: 10.16606/j.cnki.issn0253-4320.2018.09.007
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
铌类固体酸催化糖转化5-羟甲基糠醛研究进展
杨凤丽1, 仝雪2, 秦丽珍1, 郑纯智1, 夏斐斐1
1. 江苏理工学院化学与环境工程学院, 江苏 常州 213001;
2. 常州大学石油化工学院, 江苏 常州 213164
Research advances on production of 5-hydroxymethylfurfural from saccharides over niobium-containing solid acids
YANG Feng-li1, TONG Xue2, QIN Li-zhen1, ZHENG Chun-zhi1, XIA Fei-fei1
1. School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China;
2. School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
下载:  PDF (2698KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 介绍了含铌催化剂在催化生物质糖转化为生物基平台化合物5-羟甲基糠醛中的催化机理及应用。与其他固体酸不同,铌类催化剂在含水体系和有水参与的反应中表现出很好的酸性和稳定性,对开发绿色经济的催化反应体系具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨凤丽
仝雪
秦丽珍
郑纯智
夏斐斐
关键词:  铌类催化剂  5-羟甲基糠醛  固体酸  生物质    
Abstract: This paper mainly introduces about the catalytic mechanism and application of niobium-containing catalysts in the production of 5-hydroxymethylfurfural, a biomass platform compound, from biomass saccharides.Different from other solid acid catalysts, niobium-containing catalysts exhibits excellent acid property and stability in water-containing system and water-involving reactions, which is of great significance for developing more green and economical catalytic process.
Key words:  niobium-containing catalyst    5-hydroxymethylfurfural    solid acid    biomass
收稿日期:  2018-01-29      修回日期:  2018-07-04           出版日期:  2018-09-20
TQ062  
基金资助: 国家自然科学基金项目(21406020);江苏省自然科学基金项目(BK20140257)
通讯作者:  杨凤丽(1984-),女,博士,讲师,研究方向为固体酸催化生物质转化,通讯联系人,yangfengli1984@hotmail.com    E-mail:  yangfengli1984@hotmail.com
引用本文:    
杨凤丽, 仝雪, 秦丽珍, 郑纯智, 夏斐斐. 铌类固体酸催化糖转化5-羟甲基糠醛研究进展[J]. 现代化工, 2018, 38(9): 28-32.
YANG Feng-li, TONG Xue, QIN Li-zhen, ZHENG Chun-zhi, XIA Fei-fei. Research advances on production of 5-hydroxymethylfurfural from saccharides over niobium-containing solid acids. Modern Chemical Industry, 2018, 38(9): 28-32.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.09.007  或          http://www.xdhg.com.cn/CN/Y2018/V38/I9/28
[1] Yu I K M,Tsang D C W.Conversion of biomass to hydroxymethylfurfural:A review of catalytic systems and underlying mechanisms[J].Bioresource Technology,2017,238:716-732.
[2] Kuster B F M.5-hydroxymethylfurfural (Hmf)-a review focusing on its manufacture[J].Starch-Starke,1990,42(8):314-321.
[3] Watanabe M,Aizawa Y,Iida T,et al.Catalytic glucose and fructose conversions with TiO2 and ZrO2 in water at 473 K:Relationship between reactivity and acid-base property determined by TPD measurement[J].Applied Catalysis a-General,2005,295(2):150-156.
[4] Carniti P,Gervasini A,Biella S,et al.Intrinsic and effective acidity study of niobic acid and niobium phosphate by a multitechnique approach[J].Chemistry of Materials,2005,17(24):6128-6136.
[5] Carniti P,Gervasini A,Bossola F,et al.Cooperative action of Bronsted and Lewis acid sites of niobium phosphate catalysts for cellobiose conversion in water[J].Applied Catalysis B-Environmental,2016,193:93-102.
[6] Tanabe K.Catalytic application of niobium compounds[J].Catalysis Today,2003,78(1/2/3/4):65-77.
[7] Carlini C,Giuttari M,Galletti A M R,et al.Selective saccharides dehydration to 5-hydroxymethyl-2-furaldehyde by heterogeneous niobium catalysts[J].Applied Catalysis a-General,1999,183(2):295-302.
[8] Nakajima K,Baba Y,Noma R,et al.Nb2O5 center dot nH2O as a heterogeneous catalyst with water-tolerant lewis acid sites[J].Journal of the American Chemical Society,2011,133(12):4224-4227.
[9] Kreissl H T,Nakagawa K,Peng Y K,et al.Niobium oxides:Correlation of acidity with structure and catalytic performance in sucrose conversion to 5-hydroxymethylfurfural[J].Journal of Catalysis,2016,338:329-339.
[10] Yang F,Liu Q,Bai X,et al.Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst[J].Bioresource Technology,2011,102(3):3424-3429.
[11] Nowak I,Ziolek M.Niobium compounds:Preparation,characterization,and application in heterogeneous catalysis[J].Chemical Reviews,1999,99(12):3603-3624.
[12] Nakajima K,Baba Y,Noma R,et al.Nb2O5·nH2O as a heterogeneous catalyst with water-tolerant lewis acid sites[J].Journal of the American Chemical Society,2011,133(12):4224-4227.
[13] Armaroli T,Busca G,Carlini C,et al.Acid sites characterization of niobium phosphate catalysts and their activity in fructose dehydration to 5-hydroxymethyl-2-furaldehyde[J].Journal of Molecular Catalysis a-Chemical,2000,151(1/2):233-243.
[14] Zhang Y,Wang J J,Ren J W,et al.Mesoporous niobium phosphate:An excellent solid acid for the dehydration of fructose to 5-hydroxymethylfurfural in water[J].Catalysis Science & Technology,2012,2(12):2485-2491.
[15] Ziolek M,Sobczak I.The role of niobium component in heterogeneous catalysts[J].Catalysis Today,2017,285:211-225.
[16] Jehng J M,Wachs I E.Molecular design of supported niobium oxide catalysts[J].Catalysis Today,1993,16(3/4):417-426.
[17] Ramanathan A,Maheswari R,Barich D H,et al.Niobium incorporated mesoporous silicate,Nb-KIT-6:Synthesis and characterization[J].Microporous and Mesoporous Materials,2014,190:240-247.
[18] 朱丽伟,王建刚,赵萍萍,等.Nb-P/SBA-15催化剂的制备及其对果糖水解制5-羟甲基糠醛的催化性能[J].燃料化学学报,2017,(6):651-669.
[19] Yue C C,Li G N,Pidko E A,et al.Dehydration of glucose to 5-hydroxymethylfurfural using Nb-doped tungstite[J].Chevipschem,2016,9(17):2421-2429.
[20] Yue C C,Zhu X C,Rigutto M,et al.Acid catalytic properties of reduced tungsten and niobium-tungsten oxides[J].Applied Catalysis B-Environmental,2015,163:370-381.
[21] Guo J,Zhu S H,Cen Y L,et al.Ordered mesoporous Nb-W oxides for the conversion of glucose to fructose,mannose and 5-hydroxymethylfurfural[J].Applied Catalysis B-Environmental,2017,200:611-619.
[22] Yue C C,Li G N,Pidko E A,et al.Dehydration of glucose to 5-hydroxymethylfurfural using Nb-doped tungstite[J].Chemsuschem,2016,9(17):2421-2429.
[23] Gromov N V,Taran O P,Semeykina V S,et al.Solid acidic NbOx/ZrO2 Catalysts for transformation of cellulose to glucose and 5-hydroxymethylfurfural in pure hot water[J].Catalysis Letters,2017,147(6):1485-1495.
[1] 俞海淼, 刘阳, 武子璐. 生物质三组分催化气化后焦油析出特性研究[J]. 现代化工, 2018, 38(8): 90-93.
[2] 坚一明, 李显, 钟梅, 刘景梅, 马凤云. 生物质型煤技术进展[J]. 现代化工, 2018, 38(7): 48-52.
[3] 高赛男, 刘中海, 秦冬玲, 杨刚. SAPO-34分子筛的合成及催化果糖制5-羟甲基糠醛的应用[J]. 现代化工, 2018, 38(7): 136-140.
[4] 穆献中, 余漱石, 徐鹏. 农村生物质能源化利用研究综述[J]. 现代化工, 2018, 38(3): 9-13,15.
[5] 王允圃, 吴秋浩, 曾子鸿, 胡雅琴, 刘玉环, Roger Ruan, 付桂明, 张辉斌, 张志林, 张淑梅, 阳秀华. 微波快速催化热解生物质制备富烃燃油的研究进展[J]. 现代化工, 2018, 38(3): 23-27.
[6] 王璐, 蒋云霞, 顾卫兵. 秸秆炭基固体酸的一步溶剂热法制备及表征[J]. 现代化工, 2018, 38(2): 123-126.
[7] 张文文, 褚华强, 周雪飞, 张亚雷, 谭晓波. 废水处理与微藻培养耦合技术研究进展[J]. 现代化工, 2018, 38(1): 53-57.
[8] 何发泉, 王宝冬, 马少丹, 马子然, 马静, 刘子林, 林德海, 孙琦, 徐文强. 生物质电厂SCR脱硝催化剂失效及再生研究[J]. 现代化工, 2017, 37(8): 72-76.
[9] 陶鹏飞, 冷一欣, 黄春香, 王俊, 韶晖. 响应面法优化糠醛废液制备乙酰丙酸的研究[J]. 现代化工, 2017, 37(7): 142-144.
[10] 黄鹏, 张文超, 姚靖靖, 赵梦婷, 霍超. 生物质催化裂解选择性制备化学品的研究进展[J]. 现代化工, 2017, 37(6): 53-57,59.
[11] 陈明鸽, 葛振红, 吴胜利, 唐雪娇, 席蓝萍, 高寒, 田维亮. 天然植物葡萄为原料制备5-羟甲基糠醛的初步研究[J]. 现代化工, 2017, 37(5): 120-122.
[12] 朱俊健, 黄鑫, 孙昊, 王志顺, 顾正桂. 连续管式反应制备丙二醇丁醚的研究[J]. 现代化工, 2017, 37(5): 181-184.
[13] 李柏春, 王凤竹, 肖连杰, 张文林. 乙酸乙酯催化萃取精馏新工艺的研究[J]. 现代化工, 2017, 37(4): 166-170.
[14] 李志瑞, 张忠营, 张全, 李微. 纤维素乙醇生产技术相关专利分析研究[J]. 现代化工, 2017, 37(3): 6-8,10.
[15] 倪潇, 曹震, 陶昌明, 胡燚, 韩毓旺. 固定化酸性离子液体催化合成二甘醇二苯甲酸酯[J]. 现代化工, 2017, 37(12): 101-105.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn