Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2022, Vol. 42 Issue (2): 122-125    DOI: 10.16606/j.cnki.issn0253-4320.2022.02.025
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
氮化硼/蚕丝导热复合材料的制备及其性能研究
侯文轩1,2, 吕喆1,2, 刘香兰1, 张献1, 宫艺1, 田兴友1
1. 中国科学院合肥物质科学研究院固体物理研究所, 中国科学院光伏与节能材料重点实验室, 安徽 合肥 230031;
2. 中国科学技术大学, 安徽 合肥 230026
Preparation and properties of boron nitride/silk thermal conductive composites
HOU Wen-xuan1,2, LV Zhe1,2, LIU Xiang-lan1, ZHANG Xian1, GONG Yi1, TIAN Xing-you1
1. Key Laboratory of Photovoltaic and Energy Conservation Materials, Solid State Physics Research Center, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
2. University of Science and Technology of China, Hefei 230026, China
下载:  PDF (3432KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对传统导热材料基体难以自然降解的问题,选择更加环保的蚕丝蛋白为基体材料,采用球磨共混-热压成型制备了氮化硼/蚕丝蛋白导热复合材料,考察了复合材料的形貌结构和导热性能。结果表明,氮化硼在复合材料中沿水平方向分布,导致复合材料表现出明显的导热各向异性。复合材料的导热系数随着氮化硼质量分数的增加而提高。当氮化硼质量分数为50%时,复合材料的水平方向导热系数为12.42 W/(m·K),垂直方向导热系数为0.41 W/(m·K)。红外热成像结果表明,氮化硼/蚕丝蛋白复合材料具有优异的传热性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯文轩
吕喆
刘香兰
张献
宫艺
田兴友
关键词:  蚕丝蛋白  氮化硼  各向异性  导热系数    
Abstract: Aiming at the problem that the matrixes of traditional thermal conductive materials are difficult to degrade naturally, a more environmentally friendly silk protein is selected as the matrix material and boron nitride/silk protein thermal conductive composites are prepared by means of ball milling-hot pressing.The morphology, structure and thermal conductivity of the composites are studied.It is shown that the composites exhibit obvious anisotropy of thermal conductivity because h-BN distributes horizontally in the composites.With increasing h-BN content, the thermal conductivity of the composites increases.As h-BN content is 50%, the thermal conductivity of composite reaches 12.42 W/(m·K) in horizontal direction and 0.41 W/(m·K) in perpendicular direction.Infrared thermal imaging results show that the composites have excellent heat transfer performance.
Key words:  silk protein    boron nitride    anisotropy    thermal conductivity
收稿日期:  2021-03-09      修回日期:  2021-12-08          
ZTFLH:  TB332  
基金资助: 国家重点研发计划(2017YFB0406200);中国科学院科学服务网络计划重点项目(KFJ-STS-ZDTP-069);安徽自然科学基金(1808085QE160)
通讯作者:  刘香兰(1981-),女,博士,副研究员,研究方向为有机无机纳米复合材料,通讯联系人,xlliu@issp.ac.cn。    E-mail:  xlliu@issp.ac.cn
作者简介:  侯文轩(1995-),男,硕士研究生,研究方向为蚕丝基导热复合材料的制备及其性能研究,xue6766168@qq.com
引用本文:    
侯文轩, 吕喆, 刘香兰, 张献, 宫艺, 田兴友. 氮化硼/蚕丝导热复合材料的制备及其性能研究[J]. 现代化工, 2022, 42(2): 122-125.
HOU Wen-xuan, LV Zhe, LIU Xiang-lan, ZHANG Xian, GONG Yi, TIAN Xing-you. Preparation and properties of boron nitride/silk thermal conductive composites. Modern Chemical Industry, 2022, 42(2): 122-125.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2022.02.025  或          https://www.xdhg.com.cn/CN/Y2022/V42/I2/122
[1] Xu X,Chen J,Zhou J,et al.Thermal conductivity of polymers and their nanocomposites[J].Advanced Materials,2018,30(17):1705544.
[2] Chen J,Huang X,Zhu Y,et al.Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability[J].Advanced Functional Materials,2017,27(5):1604754.
[3] Shahil K M F,Balandin A A.Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J].Nano Letters,2012,12(2):861-867.
[4] Moore A L,Shi L.Emerging challenges and materials for thermal management of electronics[J].Materials Today,2014,17(4):163-174.
[5] Han Z,Fina A.Thermal conductivity of carbon nanotubes and their polymer nanocomposites:A review[J].Progress in Polymer Science,2011,36(7):914-944.
[6] Kim G H,Lee D,Shanker A,et al.High thermal conductivity in amorphous polymer blends by engineered interchain interactions[J].Nature Materials,2015,14(3):295-300.
[7] Yuan C,Duan B,Li L,et al.Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets[J].ACS Applied Materials & Interfaces,2015,7(23):13000-13006.
[8] Guo Y,Xu G,Yang X,et al.Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology[J].Journal of Materials Chemistry C,2018,6(12):3004-3015.
[9] Dang T M L,Kim C Y,Zhang Y,et al.Enhanced thermal conductivity of polymer composites via hybrid fillers of anisotropic aluminum nitride whiskers and isotropic spheres[J].Composites Part B:Engineering,2017,114:237-246.
[10] Zhou B,Luo W,Yang J,et al.Thermal conductivity of aligned CNT/polymer composites using mesoscopic simulation[J].Composites Part A:Applied Science and Manufacturing,2016,90:410-416.
[11] Lin Z,Liu Y,Raghavan S,et al.Magnetic alignment of hexagonal boron nitride platelets in polymer matrix:Toward high performance anisotropic polymer composites for electronic encapsulation[J].ACS Applied Materials & Interfaces,2013,5(15):7633-7640.
[12] Huang Z,Wu,Drummer D,et al.Enhanced the thermal conductivity of polydimethylsiloxane via a three-dimensional hybrid boron nitride@silver nanowires thermal network filler[J].Polymers (20734360),2021,13(2):248-248.
[13] Weng L,Wang H,Zhang X,et al.Improved Thermal conductivities of epoxy resins containing surface functionalized BN nanosheets[J].Nano,2018,13(11):1850133.
[14] Jang I,Shin K H,Yang I,et al.Enhancement of thermal conductivity of BN/epoxy composite through surface modification with silane coupling agents[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2017,518:64-72.
[15] Kiddee P,Naidu R,Wong M H.Electronic waste management approaches:An overview[J].Waste Management,2013,33(5):1237-1250.
[16] Guo C,Li C,Vu H V,et al.Thermoplastic moulding of regenerated silk[J].Nature Materials,2020,19(1):102-108.
[17] Wang X,Wu P.Preparation of highly thermally conductive polymer composite at low filler content via a self-assembly process between polystyrene microspheres and boron nitride nanosheets[J].ACS Applied Materials & Interfaces,2017,9(23):19934-19944.
[18] Lei W,Mochalin V N,Liu D,et al.Boron nitride colloidal solutions,ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization[J].Nature Communications,2015,6(1):8849.
[19] Zhang X,Zhang J,Xia L,et al.Simple and consecutive melt extrusion method to fabricate thermally conductive composites with highly oriented boron nitrides[J].ACS Applied Materials & Interfaces,2017,9(27):22977-22984.
[20] Stankovich S,Dikin D A,Dommett G H B,et al.Graphene-based composite materials[J].Nature,2006,442(7100):282-286.
[21] Kargar F,Barani Z,Salgado R,et al.Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers[J].ACS Applied Materials & Interfaces,2018,10(43):37555-37565.
[1] 刘岩, 李巧灵, 李兰兰, 唐成春. 石墨烯/氮化硼异质结制备及应用研究进展[J]. 现代化工, 2020, 40(1): 25-28.
[2] 宋晓玲, 李国华, 黄迪, 朱萌萌, 张雪明. 超临界CO2制备h-BN纳米片及其负载钴催化性能研究[J]. 现代化工, 2018, 38(9): 164-167.
[3] 庞海涛. 原油管道总传热系数影响因素研究[J]. 现代化工, 2018, 38(3): 247-250.
[4] 李新芳, 吴淑英, 朱冬生. 碳纳米管/石蜡复合相变储能材料的导热性能研究[J]. 现代化工, 2015, 35(5): 113-116.
[5] 吴淑英,朱冬生,汪南. 改善有机储热材料传热性能的研究进展及应用[J]. , 2009, 29(10): 0-0.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn