Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (7): 82-85    DOI: 10.16606/j.cnki.issn0253-4320.2021.07.017
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
电催化氮还原合成氨催化剂研究进展
陈辉1, 刘淑芝1,2, 刘先军1
1. 东北石油大学化学化工学院石油天然气省重点实验室, 黑龙江 大庆 163318;
2. 广东石油化工学院化学工程学院, 广东 茂名 525000
Research progress on electrocatalytic nitrogen reduction catalysts for ammonia synthesis
CHEN Hui1, LIU Shu-zhi1,2, LIU Xian-jun1
1. Heilongjiang Provincial Key Laboratory of Oil and Natural Gas Chemical Industry, Chemistry and Chemical Engineering School, Northeast Petroleum University, Daqing 163318, China;
2. Faculty of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
下载:  PDF (1337KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 综述了贵金属催化剂、非贵金属催化剂以及非金属催化剂在电催化氮还原反应(NRR)中的最新研究进展,并进一步对其未来发展方向进行了分析和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈辉
刘淑芝
刘先军
关键词:  电催化  氮还原  催化剂  合成氨    
Abstract: This paper reviews latest research advances on applications of noble metal catalysts,non-noble-metal catalysts and non-metallic catalysts in catalytic nitrogen reduction reaction,and analyzes and expects the future research and development directions.
Key words:  electrocatalysis    nitrogen reduction    catalyst    synthetic ammonia
收稿日期:  2020-07-26      修回日期:  2021-04-25          
ZTFLH:  TQ113.26  
基金资助: 黑龙江省教育厅科学技术研究项目(TSTAU-R2018019);黑龙江省自然科学基金项目(B2016001)
通讯作者:  刘先军(1972-),男,博士,副教授,研究方向为新能源材料,通讯联系人,lxjlj2000@126.com。    E-mail:  lxjlj2000@126.com
作者简介:  陈辉(1995-),男,硕士生
引用本文:    
陈辉, 刘淑芝, 刘先军. 电催化氮还原合成氨催化剂研究进展[J]. 现代化工, 2021, 41(7): 82-85.
CHEN Hui, LIU Shu-zhi, LIU Xian-jun. Research progress on electrocatalytic nitrogen reduction catalysts for ammonia synthesis. Modern Chemical Industry, 2021, 41(7): 82-85.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.07.017  或          https://www.xdhg.com.cn/CN/Y2021/V41/I7/82
[1] Soloveichik G.Electrochemical synthesis of ammonia as a potential alternative to the Haber-Bosch process[J].Nature Catalysis,2019,2(5):377-380.
[2] Yang J,Weng W,Xiao W.Electrochemical synthesis of ammonia in molten salts[J].Journal of Energy Chemistry,2020,43:195-207.
[3] Zhu X,Mou S,Peng Q,et al.Aqueous electrocatalytic N2 reduction for ambient NH3 synthesis:Recent advances in catalyst development and performance improvement[J].Journal of Materials Chemistry A,2020,8(4):1545-1556.
[4] Cui X,Tang C,Zhang Q.A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions[J].Advanced Energy Materials,2018,8(22):1800369.
[5] Liu H M,Han S H,Zhao Y,et al.Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction[J].Journal of Materials Chemistry A,2018,6(7):3211-3217.
[6] Wang D,Azofra L M,Harb M,et al.Energy-efficient nitrogen reduction to ammonia at low overpotential in aqueous electrolyte under ambient conditions[J].Chem Sus Chem,2018,11(19):3416-3422.
[7] Bao D,Zhang Q,Meng F L,et al.Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle[J].Advanced Materials,2017,29(3):1604799.
[8] Nazemi M,Panikkanvalappil S R,El-Sayed M A.Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages[J].Nano Energy,2018,49:316-323.
[9] Mohammadreza,Nazemi,Mostafa,et al.The role of oxidation of silver in bimetallic gold-silver nanocages on electrocatalytic activity of nitrogen reduction reaction[J].Journal of Physical Chemistry A,2019,123(18):11422-11427.
[10] Zhu X,Mou S,Peng Q,et al.Aqueous electrocatalytic N2 reduction for ambient NH3 synthesis:recent advances in catalyst development and performance improvement[J].Journal of Materials Chemistry A,2020,8(4):1545-1556.
[11] Wang J,Chen S,Li Z,et al.Recent advances in electrochemical synthesis of ammonia through nitrogen reduction under ambient conditions[J].Chem Electro Chem,2020,7(5):1067-1079.
[12] Zhang L,Ji X,Ren X,et al.Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst:theoretical and experimental studies[J].Advanced Materials,2018,30(28):1800191.
[13] Zeng L,Chen S,van der Zalm J,et al.Sulfur vacancy-rich N-doped MoS2 nanoflowers for highly boosting electrocatalytic N2 fixation to NH3 under ambient conditions[J].Chemical Communications,2019,55(51):7386-7389.
[14] Gao Y,Cao Y,Zhuo H,et al.Mo2TiC2 MXene:A promising catalyst for electrocatalytic ammonia synthesis[J].Catalysis Today,2020,339(1):120-126.
[15] Zhang L,Ji X,Ren X,et al.Efficient electrochemical N2 reduction to NH3 on MoN nanosheets array under ambient conditions[J].ACS Sustainable Chemistry & Engineering,2018,6(8):9550-9554.
[16] Hu L,Khaniya A,Wang J,et al.Ambient electrochemical ammonia synthesis with high selectivity on Fe/Fe oxide catalyst[J].ACS Catalysis,2018,8(10):9312-9319.
[17] Zhao X,Lan X,Yu D,et al.Deep eutectic-solvothermal synthesis of nanostructured Fe3S4 for electrochemical N2 fixation under ambient conditions[J].Chemical Communications,2018,54(92):13010-13013.
[18] Zhu X,Wu T,Ji L,et al.Unusual electrochemical N2 reduction activity in an earth-abundant iron catalyst via phosphorous modulation[J].Chemical Communications,2020,56(5):731-734.
[19] Cui B,Zhang J,Liu S,et al.Electrochemical synthesis of ammonia directly from N2 and water over iron-based catalysts supported on activated carbon[J].Green Chemistry,2017,19(1):298-304.
[20] Zhang R,Zhang Y,Ren X,et al.High-efficiency electrosynthesis of ammonia with high selectivity under ambient conditions enabled by VN nanosheet array[J].ACS Sustainable Chemistry & Engineering,2018,6(8):9545-9549.
[21] Li P,Fu W,Zhuang P,et al.Amorphous Sn/crystalline SnS2 nanosheets via in situ electrochemical reduction methodology for highly efficient ambient N2 fixation[J].Small,2019,15(40):1902535.
[22] Li L,Tang C,Xia B,et al.Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction[J].ACS Catalysis,2019,9(4):2902-2908.
[23] Hao Y C,Guo Y,Chen L W,et al.Publisher correction:Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water[J].Nature Catalysis,2019,2(5):448-456.
[24] Wang K,Smith D,Zheng Y.Electron-driven heterogeneous catalytic synthesis of ammonia:Current states and perspective[J].Carbon Resources Conversion,2018,1(1):2-31.
[25] Fan Q,Choi C,Yan C,et al.High-yield production of few-layer boron nanosheets for efficient electrocatalytic N2 reduction[J].Chemical Communications,2019,55(29):4246-4249.
[26] Zhang L,Ding L X,Chen G F,et al.Ammonia synthesis under ambient conditions:Selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets[J].Angewandte Chemie,2019,131(9):2638-2642.
[27] Zhao S,Lu X,Wang L,et al.Carbon-based metal-free catalysts for electrocatalytic reduction of nitrogen for synthesis of ammonia at ambient conditions[J].Advanced Materials,2019,31(13):1805367.
[28] Liu Y,Su Y,Quan X,et al.Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon[J].ACS Catalysis,2018,8(2):1186-1191.
[29] Liu S,Wang M,Qian T,et al.Facilitating nitrogen accessibility to boron-rich covalent organic frameworks via electrochemical excitation for efficient nitrogen fixation[J].Nature Communications,2019,10(1):1-9.
[30] Wang J,Wang S,Li J.S-Doped three-dimensional graphene (S-3DG):A metal-free electrocatalyst for the electrochemical synthesis of ammonia under ambient conditions[J].Dalton Transactions,2020,49(7):2258-2263.
[1] 唐瑞源, 吴康, 刘凯, 曹鹏程, 袁悦. 多环芳烃催化加氢催化剂与反应机理研究进展[J]. 现代化工, 2021, 41(7): 61-67.
[2] 林代峰, 张臻, 罗永晋, 钱庆荣, 陈庆华. 二氧化碳加氢制甲醇催化剂研究进展[J]. 现代化工, 2021, 41(6): 11-16.
[3] 陈小根, 张茹杰, 李书昊, 沈伯雄. 用于CO氧化的单原子催化剂研究进展[J]. 现代化工, 2021, 41(6): 70-75.
[4] 郭文林, 李伟斌, 姚根有, 潘登峰, 朱浩, 尹进. MEA生产工艺及关键材料研究进展[J]. 现代化工, 2021, 41(6): 81-85,89.
[5] 戴豪波, 杜凯敏, 郑渭建, 刘春红, 胡晨晖, 卓佐西, 蒋楠. NH3-SCR脱硝催化剂研究进展[J]. 现代化工, 2021, 41(5): 40-44,48.
[6] 赵中昆, 许志志, 陈鑫. 单原子催化剂在电催化还原领域的研究进展[J]. 现代化工, 2021, 41(5): 45-48.
[7] 杨阳, 张胜中, 王红涛. 碱性电解水制氢关键材料研究进展[J]. 现代化工, 2021, 41(5): 78-82,87.
[8] 吴芹, 石泉, 宋淑芬, 黎汉生, 史大昕, 赵芸, 矫庆泽. 磺酸树脂催化合成对叔丁基苯甲酸甲酯的研究[J]. 现代化工, 2021, 41(5): 98-102.
[9] 何玲, 孙福海, 徐琪鹏. 电沉积法从废弃FCC催化剂中回收稀土元素的研究[J]. 现代化工, 2021, 41(5): 108-113.
[10] 刘建武, 严生虎, 张跃. 微波促进卤素交换氟化反应合成邻氟苯腈的研究[J]. 现代化工, 2021, 41(5): 148-152.
[11] 王玉春, 刘赵荣, 谭超, 孙鸿, 李忠, 薛雨佳. 铜源阴离子对CuY催化剂性能的影响[J]. 现代化工, 2021, 41(5): 163-167.
[12] 苏暐光, 孔磊. Cu基催化剂上二氧化碳加氢合成甲醇的研究进展[J]. 现代化工, 2021, 41(4): 26-29.
[13] 于祺, 李瑞峰, 田宏宇, 吴显军. 浆态床渣油加氢油溶性催化剂研究进展[J]. 现代化工, 2021, 41(4): 34-37.
[14] 赵文祥, 杨双霞, 陈雷, 孙来芝, 谢新苹, 伊晓路, 司洪宇, 于萌萌, 华栋梁. 生物质热化学催化转化制富氢合成气研究进展[J]. 现代化工, 2021, 41(4): 38-42.
[15] 张甄, 秦绍东, 何若南, 李加波, 邢爱华. 合成气直接制备低碳烯烃催化剂研究进展[J]. 现代化工, 2021, 41(4): 58-62.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn