Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2020, Vol. 40 Issue (6): 47-50,56    DOI: 10.16606/j.cnki.issn0253-4320.2020.06.011
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
分子筛酸中心调控及影响研究进展
刘华, 王辉, 邢爱华, 程继红
北京低碳清洁能源研究院, 北京 102211
Research progress on tuning acid centers of molecular sieves and influence
LIU Hua, WANG Hui, XING Ai-hua, CHENG Ji-hong
National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China
下载:  PDF (2272KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 介绍了分子筛酸中心在孔道中的分布、酸中心的聚集度和酸强度的调控方法,分析了其在催化反应中的影响作用机理,对分子筛酸中心的调控在制备专用型分子筛方面所面临的挑战和进一步的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘华
王辉
邢爱华
程继红
关键词:  分子筛  酸分布  酸强度  调控方法    
Abstract: The tuning strategies of acid site distribution in the pore canal,the aggregation degree of acid site and acid strength of molecular sieves are introduced,and their influencing action mechanism in catalytic reactions are analyzed.The challenges and further research directions faced by acid site tuning in the preparation of special molecular sieves are prospected.
Key words:  molecular sieves    acid distribution    acid strength    tuning strategies
收稿日期:  2019-09-24      修回日期:  2020-04-08          
ZTFLH:  O64  
通讯作者:  程继红(1975-),男,博士,教授级高工,研究方向为天然气转化,通讯联系人,jihong.cheng.c@chnenergy.com.cn。    E-mail:  jihong.cheng.c@chnenergy.com.cn
作者简介:  刘华(1987-),男,博士,工程师,研究方向为页岩气转化及工业催化剂开发
引用本文:    
刘华, 王辉, 邢爱华, 程继红. 分子筛酸中心调控及影响研究进展[J]. 现代化工, 2020, 40(6): 47-50,56.
LIU Hua, WANG Hui, XING Ai-hua, CHENG Ji-hong. Research progress on tuning acid centers of molecular sieves and influence. Modern Chemical Industry, 2020, 40(6): 47-50,56.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2020.06.011  或          https://www.xdhg.com.cn/CN/Y2020/V40/I6/47
[1] Blay V,Louis B,Miravalles R,et al.Engineering zeolites for catalytic cracking to light olefins[J].ACS Catalysis,2017,7:6542-6566.
[2] Shamzhy M,Opanasenko M,Concepcion P,et al.New trends in tailoring active sites in zeolite-based catalysts[J].Chemical Society Reviews,2019,48:1095-1149.
[3] Boronat M,Martinez-Sanchez C,Law D,et al.Enzyme-like specificity in zeolites:A unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO[J].Journal of the American Chemical Society,2008,130:16316-16323.
[4] Sklenak S,Dedecek J,Li C B,et al.Aluminum siting in silicon-rich zeolite frameworks:A combined high-resolution Al-27 NMR spectroscopy and quantum mechanics/molecular mechanics study of ZSM-5[J].Angewandte Chemie-International Edition,2007,46:7286-7289.
[5] Dedecek J,Kaucky D,Wichterlova B.Al distribution in ZSM-5 zeolites:An experimental study[J].Chemical Communications,2001,11:970-971.
[6] Knott B C,Nimlos C T,Robichaud D J,et al.Consideration of the aluminum distribution in zeolites in theoretical and experimental catalysis research[J].ACS Catalysis,2018,8:770-784.
[7] Li L,Chen Y,Xu S,et al.Oriented control of Al locations in the framework of Al-Ge-ITQ-13 for catalyzing methanol conversion to propene[J].Journal of Catalysis,2016,344:242-251.
[8] Yokoi T,Mochizuki H,Namba S,et al.Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-state NMR technique and catalytic properties[J].The Journal of Physical Chemistry C,2015,119:15303-15315.
[9] Biligetu T,Wang Y,Nishitoba T,et al.Al distribution and catalytic performance of ZSM-5 zeolites synthesized with various alcohols[J].Journal of Catalysis,2017,353:1-10.
[10] Yokoi T,Mochizuki H,Biligetu T,et al.Unique Al distribution in the MFI framework and its impact on catalytic properties[J].Chemistry Letters,2017,46:798-800.
[11] Liu H,Wang H,Xing A H,et al.Effect of Al distribution in MFI framework channels on the catalytic performance of ethane and ethylene aromatization[J].Journal of Physical Chemistry C,2019,123:15637-15647.
[12] Wang S,Wang P,Qin Z,et al.Relation of catalytic performance to the aluminum siting of acidic zeolites in the conversion of methanol to olefins,viewed via a comparison between ZSM-5 and ZSM-11[J].ACS Catalysis,2018,8:5485-5505.
[13] Pashkova V,Klein P,Dedecek J,et al.Incorporation of Al at ZSM-5 hydrothermal synthesis.Tuning of Al pairs in the framework[J].Microporous and Mesoporous Materials,2015,202:138-146.
[14] Dedecek J,Tabor E,Sklenak S.Tuning the aluminum distribution in zeolites to increase their performance in acid-catalyzed reactions[J].Chemsuschem,2019,12:556-576.
[15] Dedecek J,Balgová V,Pashkova V,et al.Synthesis of ZSM-5 zeolites with defined distribution of al atoms in the framework and multinuclear MAS NMR analysis of the control of Al distribution[J].Chemistry of Materials,2012,24:3231-3239.
[16] Děde Ač2 ek J,Kaucký D,Wichterlová B.Co2+ ion siting in pentasil-containing zeolites,part 3.:Co2+ ion sites and their occupation in ZSM-5:A VIS diffuse reflectance spectroscopy study[J].Microporous and Mesoporous Materials,2000,35/36:483-494.
[17] Bernauer M,Tabor E,Pashkova V,et al.Proton proximity-new key parameter controlling adsorption,desorption and activity in propene oligomerization over H-ZSM-5 zeolites[J].Journal of Catalysis,2016,344:157-172.
[18] Sazama P,Děde Ač2 ek J,Gábová V,et al.Effect of aluminium distribution in the framework of ZSM-5 on hydrocarbon transformation.Cracking of 1-butene[J].Journal of Catalysis,2008,254:180-189.
[19] Abbasizadeh S,Karimzadeh R.Effect of framework single and close (pairs and un-pairs) aluminum atoms on phosphorous modification of HZSM-5 in cracking of liquefied petroleum gas to ethylene and propylene[J].Microporous and Mesoporous Materials,2018,266:132-140.
[20] Deimund M A,Harrison L,Lunn J D,et al.Effect of heteroatom concentration in SSZ-13 on the methanol-to-olefins reaction[J].ACS Catalysis,2016,6:542-550.
[21] Lin L F,Zhao S F,Zhang D W,et al.Acid strength controlled reaction pathways for the catalytic cracking of 1-pentene to propene over ZSM-5[J].ACS Catalysis,2015,5:4048-4059.
[22] Chen J,Liang T,Li J,et al.Regulation of framework aluminum siting and acid distribution in H-MCM-22 by boron incorporation and its effect on the catalytic performance in methanol to hydrocarbons[J].ACS Catalysis,2016,6:2299-2313.
[23] Žilková N,Shamzhy M,Shvets O,et al.Transformation of aromatic hydrocarbons over isomorphously substituted UTL:Comparison with large and medium pore zeolites[J].Catalysis Today,2013,204:22-29.
[24] Shamzhy M V,Shvets O V,Opanasenko M V,et al.Extra-large-pore zeolites with UTL topology:Control of the catalytic activity by variation in the nature of the active sites[J].Chemcatchem,2013,5:1891-1898.
[25] Meng L Q,Zhu X C,Mezari B,et al.On the role of acidity in bulk and nanosheet T MFI (T=Al-,(3+) Ga3+,Fe3+,B3+) zeolites in the methanol-to-hydrocarbons reaction[J].Chemcatchem,2017,9:3942-3954.
[26] Jones A J,Carr R T,Zones S I,et al.Acid strength and solvation in catalysis by MFI zeolites and effects of the identity,concentration and location of framework heteroatoms[J].Journal of Catalysis,2014,312:58-68.
[1] 胡晨晖, 刘春红, 胡达清, 蒋楠, 卓佐西, 范海东. 国六标准下柴油车尾气处理应对及分子筛SCR脱硝技术进展[J]. 现代化工, 2020, 40(6): 24-28.
[2] 郭磊, 朱伟平, 李飞, 郭智慧, 薛云鹏. 分子筛微观形貌调控合成研究进展[J]. 现代化工, 2020, 40(6): 38-41,46.
[3] 王娟, 王泽昱, 王博磊, 王鹤臻, 刁国华, 谭燚, 潘立卫. 介微孔分子筛催化剂在甲烷重整反应中的研究进展[J]. 现代化工, 2020, 40(5): 32-35.
[4] 徐天宇, 崔君君, 孙浩伟, 董蕾, 苏有勇. Zn改性ZSM-5分子筛催化油酸制备芳香烃的研究[J]. 现代化工, 2020, 40(5): 82-85,89.
[5] 叶磊, 汪成, 黄英杰, 刘纪昌, 沈本贤, 孙辉. 模拟移动床吸附分离对甲乙苯工艺[J]. 现代化工, 2020, 40(5): 199-203,207.
[6] 李君华, 王丽娜, 张丹, 钱建华, 刘琳. 酸处理ZSM-5分子筛对甲醇芳构化反应的影响[J]. 现代化工, 2020, 40(3): 107-111.
[7] 林雄超, 李晓佳, 丁雄文, 罗萌, 殷甲楠. 碱溶液改性ZSM-5分子筛直接催化合成气制低碳烯烃[J]. 现代化工, 2020, 40(3): 126-130,136.
[8] 魏麟骄, 李学进, 陈艳红, 程光南. 后处理法制备多级孔Y型分子筛及其加氢裂化性能研究[J]. 现代化工, 2020, 40(3): 190-194.
[9] 刘嵩, 刘存, 刘海鸥, 张雄福. Pd/KL催化剂高效催化苯酚选择性加氢制环己酮的研究[J]. 现代化工, 2020, 40(1): 140-144.
[10] 肖瑞杰, 赵学艳, 曹桂荣, 张瑞蕾. HZSM-5分子筛负载磷钼酸在苯酚-异丙醇烷基化中的应用[J]. 现代化工, 2020, 40(1): 165-168.
[11] 余从立, 郭海超, 纪祖焕. 透水型分子筛膜在生物燃料乙醇生产中应用的经济性分析[J]. 现代化工, 2019, 39(9): 192-194.
[12] 冯翀, 刘甜甜, 王鹏程, 潘丽, 李伟斌, 袁秋华, 冯志武. 喷雾成型制备钛硅分子筛微球及其催化环己酮氨肟化反应性能[J]. 现代化工, 2019, 39(8): 185-190.
[13] 闫扶摇, 李殿卿, 王逸蓉, 郭立颖. ZSM-5固载复盐离子液体催化剂的制备与性能[J]. 现代化工, 2019, 39(8): 96-99.
[14] 李艳红, 彭昭霞, 陈亿琴, 梁光兵, 訾昌毓, 冯一笑, 张登峰. 生物质灰制备分子筛的研究进展[J]. 现代化工, 2019, 39(7): 38-42.
[15] 鲁奇林, 李雨擎. MCM-41分子筛的水热合成、改性及其应用研究进展[J]. 现代化工, 2019, 39(4): 40-44.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn