Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2019, Vol. 39 Issue (10): 70-75    DOI: 10.16606/j.cnki.issn0253-4320.2019.10.016
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
碳硅负载氧化铌催化果糖制备5-羟甲基糠醛的研究
杨凤丽1, 赵芷言1, 仝雪2
1. 江苏理工学院化学与环境工程学院, 江苏 常州 213000;
2. 常州大学石油化工学院, 江苏 常州 213164
Conversion of fructose into 5-hydroxymethylfurfural over carbon-silicon supported niobium oxide
YANG Feng-li1, ZHAO Zhi-yan1, TONG Xue2
1. School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213000, China;
2. School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
下载:  PDF (1551KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 制备了碳硅负载氧化铌催化剂,并对其催化生物质糖转化为5-羟甲基糠醛(HMF)进行研究,对铌负载量、反应时间、反应温度、催化剂质量等影响因素进行考察。结果表明,铌负载量对催化剂酸量和催化活性及HMF选择性均有重要影响:催化剂酸量随铌质量分数增加而增加,果糖转化率也随之增加;HMF选择性随着铌质量分数增加呈现先上升后下降的变化趋势,铌负载量为5%时,HMF收率最大可达82.8%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨凤丽
赵芷言
仝雪
关键词:  氧化铌  5-羟甲基糠醛  碳硅载体    
Abstract: Nb2O5/C-Si is prepared and its catalytic properties in conversion of biomass sugar to 5-hydroxymethylfurfural (HMF) are studied.The factors such as niobium oxide loading amount,reaction time,temperature and catalyst dosage are investigated.It is found the niobium oxide loading amount has important impact on the acidity amount and catalytic properties of the catalyst,and the selectivity of HMF.With the increase of niobium oxide loading amount,both the acidity amount of catalyst and the conversion rate of fructose increase while the selectivity of HMF increases firstly and decreases then.The highest yield of HMF can reach 82.8% over 5% Nb2O5/P-C-Si catalyst.
Key words:  niobium oxide    5-hydroxymethylfurfural    carbon-silicon supporter
收稿日期:  2019-01-02      修回日期:  2019-08-10           出版日期:  2019-10-20
O643.3  
基金资助: 国家自然科学基金项目(21406020);江苏省科技厅资助项目(BK20140257)
通讯作者:  杨凤丽(1984-),女,博士,副教授,研究方向为固体酸催化生物质转化,通讯联系人,yangfengli1984@hotmail.com。   
引用本文:    
杨凤丽, 赵芷言, 仝雪. 碳硅负载氧化铌催化果糖制备5-羟甲基糠醛的研究[J]. 现代化工, 2019, 39(10): 70-75.
YANG Feng-li, ZHAO Zhi-yan, TONG Xue. Conversion of fructose into 5-hydroxymethylfurfural over carbon-silicon supported niobium oxide. Modern Chemical Industry, 2019, 39(10): 70-75.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2019.10.016  或          https://www.xdhg.com.cn/CN/Y2019/V39/I10/70
[1] Mika L T,Csefalvay E,Nemeth A.Catalytic conversion of carbohydrates to initial platform chemicals:Chemistry and sustainability[J].Chemical Reviews,2018,118(2):505-613.
[2] Agarwal B,Kailasam K,Sangwan R S,et al.Traversing the history of solid catalysts for heterogeneous synthesis of 5-hydroxymethylfurfural from carbohydrate sugars:A review[J].Renewable & Sustainable Energy Reviews,2018,82:2408-2425.
[3] Tan-Soetedjo J N M,van de Bovenkamp H H,Abdilla R M,et al.Experimental and kinetic modeling studies on the conversion of sucrose to levulinic acid and 5-hydroxymethylfurfural using sulfuric acid in water[J].Industrial & Engineering Chemistry Research,2017,56(45):13229-13240.
[4] Villanueva N I,Marzialetti T G,Mechanism and kinetic parameters of glucose and fructose dehydration to 5-hydroxymethylfurfural over solid phosphate catalysts in water[J].Catalysis Today,2018,302:100-107.
[5] Li H,Fang Z,Smith R L,et al.Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials[J].Progress in Energy and Combustion Science,2016,55:98-194.
[6] Chareonlimkun A,Champreda V,Shotipruk A,et al.Catalytic conversion of sugarcane bagasse,rice husk and corncob in the presence of TiO2,ZrO2 and mixed-oxide TiO2-ZrO2 under hot compressed water (HCW) condition[J].Bioresource Technology,2010,101(11):4179-4186.
[7] Ventura M,Dibenedetto A,Aresta M,Heterogeneous catalysts for the selective aerobic oxidation of 5-hydroxymethylfurfural to added value products in water[J].Inorganica Chimica Acta,2018,470:11-21.
[8] Carniti P,Gervasini A,Bossola F,et al.Cooperative action of Bronsted and Lewis acid sites of niobium phosphate catalysts for cellobiose conversion in water[J].Applied Catalysis B-Environmental,2016,193:93-102.
[9] Chan X J,Pu T C,Chen X Y,et al.Effect of niobium oxide phase on the furfuryl alcohol dehydration[J].Catalysis Communications,2017,97:65-69.
[10] Guo J,Zhu S H,Cen Y L,et al.Ordered mesoporous Nb-W oxides for the conversion of glucose to fructose,mannose and 5-hydroxymethylfurfural[J].Applied Catalysis B-Environmental,2017,200:611-619.
[11] Kreissl H T,Nakagawa K,Peng Y K,et al.Niobium oxides:Correlation of acidity with structure and catalytic performance in sucrose conversion to 5-hydroxymethylfurfural[J].Journal of Catalysis,2016,338:329-339.
[12] Li X C,Peng K H,Xia Q N,et al.Efficient conversion of cellulose into 5-hydroxymethylfurfural over niobia/carbon composites[J].Chemical Engineering Journal,2018,332:528-536.
[13] Van de Vyver S,Peng L,Geboers J,et al.Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose[J].Green Chemistry,2010,12(9):1560-1563.
[14] Wu S,Ju H X,and Liu Y,Conductive mesocellular silica-carbon nanocomposite foams for immobilization,direct electrochemistry,and biosensing of proteins[J].Advanced Functional Materials,2007,17(4):585-592.
[15] Wan Y,Wang H Y,Zhao Q F,et al.Ordered mesoporous Pd/silica-carbon as a highly active heterogeneous catalyst for coupling reaction of chlorobenzene in aqueous media[J].Journal of the American Chemical Society,2009,131(12):4541-4550.
[16] Malaika A,Rechnia-Goracy P,Kot M,et al.Selective and efficient dimerization of isobutene over H-3 PO4/activated carbon catalysts[J].Catalysis Today,2018,301:266-273.
[17] Puziy A M,Poddubnaya O I,Gawdzik B,et al.Functionalization of carbon and silica gel by phosphoric acid[J].Adsorption Science & Technology,2007,25(8):531-542.
[18] Puziy A M,Poddubnaya O I,Martinez-Alonso A,et al.Synthetic carbons activated with phosphoric acid-I.Surface chemistry and ion binding properties[J].Carbon,2002,40(9):1493-1505.
[19] Puziy A M,Poddubnaya O I,Martinez-Alonso A,et al.Synthetic carbons activated with phosphoric acid Ⅲ.Carbons prepared in air[J].Carbon,2003,41(6):1181-1191.
[20] Chai S H,Wang H P,Liang Y,et al.Sustainable production of acrolein:Gas-phase dehydration of glycerol over Nb2O5 catalyst[J].Journal of Catalysis,2007,250(2):342-349.
[21] Grobelny M,Kalisz M,Mazur M,et al.Functional Nb2O5 film and Nb2O5+CuO,Nb2O5+Graphene,Nb2O5+CuO+Graphene composite films to modify the properties of Ti6Al4V titanium alloy[J].Thin Solid Films,2016,616:64-72.
[22] Huang F M,Su Y W,Long Z Y,et al.Enhanced formation of 5-hydroxymethylfurfural from glucose using a silica-supported phosphate and iron phosphate heterogeneous catalyst[J].Industrial & Engineering Chemistry Research,2018,57(31):10198-10205.
[23] Sudarsan V,Muthe K P,Vyas J C,et al.PO43- tetrahedra in SbPO4 and SbOPO4:a 31PNMR and XPS study[J].Journal of Alloys and Compounds,2002,336(1-2):119-123.
[24] Qi X H,Watanabe M,Aida T M,et al.Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating[J].Green Chemistry,2008,10(7):799-805.
[25] Qi X H,Watanabe M,Aida T M,et al.Sulfated zirconia as a solid acid catalyst for the dehydration of fructose to 5-hydroxymethylfurfural[J].Catalysis Communications,2009,10(13):1771-1775.
[26] Antonetti C,Melloni M,Licursi D,et al.Microwave-assisted dehydration of fructose and inulin to HMF catalyzed by niobium and zirconium phosphate catalysts[J].Applied Catalysis B-Environmental,2017,206:364-377.
[27] Matharu A S,Ahmed S,Almonthery B,et al.Starbon/high-amylose corn starch-supported N-heterocyclic carbene-iron(Ⅲ) catalyst for conversion of fructose into 5-hydroxymethylfurfural[J].Chemsuschem,2018,11(4):716-725.
[28] Yu I K M,Tsang D C W.Conversion of biomass to hydroxymethylfurfural:A review of catalytic systems and underlying mechanisms[J].Bioresource Technology,2017,238:716-732.
[29] Song Y,Zhang L L,Li G D,et al.ZSM-5 extrudates modified with phosphorus as a super effective MTP catalyst:Impact of the acidity on binder[J].Fuel Processing Technology,2017,168:105-115.
[1] 宋开贺, 苏坤梅, 李振环. 5-羟甲基糠醛催化合成2,5-呋喃二甲酸的研究[J]. 现代化工, 2019, 39(9): 135-140.
[2] 宋巍, 龙靖文, 刘琪英, 潘成强, 王飞. 石墨烯基催化剂用于生物质转化的研究进展[J]. 现代化工, 2019, 39(7): 22-26,28.
[3] 单译, 李德豹, 刘思乐, 尚冬梅, 吴静, 张雅静. 蒸氨法Cu基催化剂的制备及生物质液体燃料合成的研究[J]. 现代化工, 2019, 39(10): 160-164.
[4] 杨凤丽, 仝雪, 秦丽珍, 郑纯智, 夏斐斐. 铌类固体酸催化糖转化5-羟甲基糠醛研究进展[J]. 现代化工, 2018, 38(9): 28-32.
[5] 高赛男, 刘中海, 秦冬玲, 杨刚. SAPO-34分子筛的合成及催化果糖制5-羟甲基糠醛的应用[J]. 现代化工, 2018, 38(7): 136-140.
[6] 陈明鸽, 葛振红, 吴胜利, 唐雪娇, 席蓝萍, 高寒, 田维亮. 天然植物葡萄为原料制备5-羟甲基糠醛的初步研究[J]. 现代化工, 2017, 37(5): 120-122.
[7] 袁月, 姚双全, 王双飞. 紫外双波长法检测葡萄糖降解产物5-HMF的研究[J]. 现代化工, 2016, 36(2): 176-178,180.
[8] 田维亮,葛振红. 紫外分光度法在5-羟甲基糠醛含量测定中影响因素的研究[J]. , 2013, 32(3): 0-0.
[9] 杨柳,刘玉环,阮榕生,王允圃,马金立,刘士涛,张锦胜,万益琴,彭红. 紫外光谱测定葡萄糖两相水解液中5-羟甲基糠醛的新方法[J]. , 2011, 31(10): 0-0.
[10] 杨柳,刘玉环,阮榕生,王允圃,曾稳稳,刘成梅,张锦胜. 固体酸催化淀粉制备5-羟甲基糠醛研究进展[J]. , 2011, 31(1): 0-0.
[11] 施金亮,刘民,贾松岩,邱金丽,郭新闻. 金属离子改性分子筛催化葡萄糖生成5-羟甲基糠醛[J]. , 2010, 30(7): 0-0.
[12] 杨凤丽,刘启顺,白雪芳,杜昱光. 由生物质制备5-羟甲基糠醛的研究进展[J]. , 2009, 29(5): 0-0.
[1] . [J]. Modern Chemical Industry, 2015, 35(8): 124 -128 .
[2] . [J]. Modern Chemical Industry, 2015, 35(8): 180 -181 .
[3] . [J]. Modern Chemical Industry, 2015, 35(8): 185 -186,188 .
[4] . [J]. Modern Chemical Industry, 2015, 35(8): 187 -189 .
[5] . [J]. Modern Chemical Industry, 2015, 35(8): 190 -192 .
[6] . [J]. Modern Chemical Industry, 2015, 35(9): 26 -29,31 .
[7] . [J]. Modern Chemical Industry, 2015, 35(9): 43 -47 .
[8] . [J]. Modern Chemical Industry, 2015, 35(9): 48 -52 .
[9] . [J]. Modern Chemical Industry, 2015, 35(9): 53 -57 .
[10] . [J]. Modern Chemical Industry, 2015, 35(9): 110 -112,114 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn