Please wait a minute...
 
最新公告: 关于寒假期间版面费发票延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (7): 150-153,155    DOI: 10.16606/j.cnki.issn0253-4320.2018.07.034
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
高效液相催化电解葡萄糖制氢过程研究
杨琦1, 苏伟1,2, 姚兰1, 孙艳3
1. 天津大学化工学院, 天津 300072;
2. 天津市膜科学与海水淡化重点实验室, 天津 300072;
3. 天津大学理学院, 天津 300072
High efficient hydrogen evolution from glucose electrolysis over liquid phase catalyst
YANG Qi1, SU Wei1,2, YAO Lan1, SUN Yan3
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
2. Tianjin Key Laboratory of Membrane and Desalination Technology, Tianjin 300072, China;
3. School of Science, Tianjin University, Tianjin 300072, China
下载:  PDF (1476KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 选取多金属氧酸盐(POM)为液相催化剂,在较低温度下,利用质子交换膜燃料电池电解葡萄糖制取氢气,探究预处理过程中加热温度、加热时间和溶液pH对加热诱导反应的影响。与传统电解法制氢不同的是采用POM作为液相催化剂和电荷转移体,而非贵金属催化剂。结果表明,在加热温度为100℃、加热时间为4 h的条件下,反应前后调节溶液pH,电解葡萄糖制氢的效果最优,产氢量与时间呈线性关系,且产氢过程中电压稳定。当电流密度为0.2 A/cm2时,产生1标准立方米H2(Nm3)消耗的电能是1.755 kWh,是电解水电能消耗的42.48%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨琦
苏伟
姚兰
孙艳
关键词:  制氢  葡萄糖  燃料电池  液相催化  电解    
Abstract: With aqueous polyoxometalates (POM) as liquid phase catalyst,hydrogen can be generated from electrolysis of glucose by using proton exchange membrane fuel cell at low temperature.The effects of heating temperature,heating time and pH of solution in the pretreatment process on the heating induced reaction are investigated.This method uses POM as both liquid catalyst and charge carrier instead of noble-metal catalyst used in traditional glucose electrolysis methods.The results show that the hydrogen evolution from glucose electrolysis can reach the best efficiency when the heating temperature is at 100℃,the heating lasts for 4 h and the pH is adjusted before and after the reaction.Hydrogen production has the linear relationship with time and the voltage remains stable during the H2 generation process.Production of one normal cubic meter of hydrogen only consumes 1.755 kWh under a current density of 0.2 A·cm-2,which is around 42.48% of the power consumption for the water electrolysis method.
Key words:  hydrogen production    glucose    fuel cells    liquid phase catalysis    electrolysis
收稿日期:  2017-12-28      修回日期:  2018-05-08           出版日期:  2018-07-20
TM911.4  
通讯作者:  苏伟(1974-),男,博士,副研究员,研究方向为高效液相催化电解醇类制氢,通讯联系人,suweihb@tju.edu.cn。    E-mail:  suweihb@tju.edu.cn
作者简介:  杨琦(1993-),女,硕士,研究方向为电化学,15102256216@163.com
引用本文:    
杨琦, 苏伟, 姚兰, 孙艳. 高效液相催化电解葡萄糖制氢过程研究[J]. 现代化工, 2018, 38(7): 150-153,155.
YANG Qi, SU Wei, YAO Lan, SUN Yan. High efficient hydrogen evolution from glucose electrolysis over liquid phase catalyst. Modern Chemical Industry, 2018, 38(7): 150-153,155.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.07.034  或          http://www.xdhg.com.cn/CN/Y2018/V38/I7/150
[1] Rühl C,Appleby P,Fennema J,et al.Economic development and the demand for energy:A histrrical perspective on the next 20 years[J].Energy Policy,2012,50(11):109-116.
[2] Tollefson J,Monastersky R.The global energy challenge:Awash with carbon[J].Nature,2012,491(7426):654-655.
[3] 赵丽霞.生物质粗甘油混合高效制氢实验研究[D].天津:天津大学,2011.
[4] Parthasarathy P,Narayanan K S.Hydrogen production from steam gasification of biomass:Influence of process parameters on hydrogen yield-a review[J].Renewable Energy,2014,66(3):570-579.
[5] 潘健民,魏运洋,李永峰,等.氢能的重要性和制氢方法浅析[J].环境保护,2008(18):59-61.
[6] Martinez-Frias J,Pham A Q,Aceves S M.A natural gas-assisted steam electrolyzer for high-efficiency production of hydrogen[J].International Journal of Hydrogen Energy,2003,28(5):483-490.
[7] Yystein Ul leberg.Modeling of advanced alkaline elec-trolyzers:A system simulation approach[J].International Journal of Hydrogen Energy,2003,28:21-33.
[8] Millet P,Andolfatto F,Durand R.Design and performance of a solid polymer electrolyte water electrolyzer[J].International Journal of Hydrogen Energy,1996,21(2):87-93.
[9] 孙道安,李春迎,张伟,等.烃类水蒸汽重整制氢研究进展[J].工业催化,2011,19(12):21-26.
[10] 贺德华,马兰,刘金尧.烃类/醇类重整制氢的研究进展[J].石油化工,2008,37(4):315-322.
[11] 刘俊.多元醇液相重整制氢的催化剂研究[D].上海:复旦大学,2011.
[12] Mueller-Langer F,Tzimas E,Kaltschmitt M,et al.Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term[J].International Journal of Hydrogen Energy,2007,32(16):3797-3810.
[13] Kothari R,Buddhi D,Sawhney R L.Comparison of environmental and economic aspects of various hydrogen production methods[J].Renewable & Sustainable Energy Reviews,2008,12(2):553-563.
[14] Nam J Y,Logan B E.Enhanced hydrogen generation using a saline catholyte in a two chamber microbial electrolysis cell[J].International Journal of Hydrogen Energy,2011,36(23):15105-15110.
[15] Wei L,Yong C,Xu D,et al.High efficiency hydrogen evolution from native biomass electrolysis[J].Energy & Environmental Science,2016,9(2):467-472.
[16] 刘金鑫.基于高分子负载非贵金属构建燃料电池氧还原催化剂的研究[D].深圳:深圳大学,2016.
[17] 黄慧慧.新型碳基非贵金属催化剂的可控制备及其高效氧还原性能研究[D].浙江:温州大学,2015.
[18] 黄孟杰.氮掺杂碳载非贵金属的氧还原催化剂研究[D].北京:北京化工大学,2016.
[19] Lv H,Geletii Y V,Zhao C,et al.Polyoxometalate water oxidation catalysts and the production of green fuel[J].Chemical Society Reviews,2012,41(22):7572-7589.
[20] Symes M D,Cronin L.Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer[J].Nature Chemistry,2013,5(5):403.
[21] Rausch B,Symes M D,Cronin L.A bio-inspired,small molecule electron-coupled-proton buffer for decoupling the half-reactions of electrolytic water splitting[J].Journal of the American Chemical Society,2013,135(37):13656.
[22] Carmo M,Fritz D L,Mergel J,et al.A comprehensive review on PEM water electrolysis[J].International Journal of Hydrogen Energy,2013,38(12):4901-4934.
[1] 刘梦真, 常艳, 张文, 王宇新. 印刷电路板酸性氯化铜蚀刻液电解再生的优化流程[J]. 现代化工, 2018, 38(9): 204-208.
[2] 李杏杏, 祝缓缓, 袁文森, 储富强, 袁宁一, 丁建宁, 林本才. 基于含氟聚苯并咪唑/磺化壳聚糖复合质子交换膜的制备与表征[J]. 现代化工, 2018, 38(9): 96-99,101.
[3] 王晨璐, 龚本涛, 沈峥, 付阳, 张亚雷. 铁炭微电解法去除青霉素类抗生素的研究[J]. 现代化工, 2018, 38(9): 100-104.
[4] 李晓静, 王一双, 陈明强, 梁添, 周中山, 杨忠连. Ni/La-SEP催化剂对生物油模型物催化重整制氢的影响[J]. 现代化工, 2018, 38(7): 84-88.
[5] 田伟, 阎富生, 黄永红, 李亚晴, 杜圣飞, 梁丕荣. 碱土金属对石油焦直接制氢的模拟分析[J]. 现代化工, 2018, 38(7): 208-213.
[6] 李福健, 成少安. 微生物电解制氢反应器的并联堆叠放大[J]. 现代化工, 2018, 38(6): 162-166.
[7] 杨洁, 孙术发, 唐华林, 葛安华, 邢涛, 马超. 不同工况下燃料电池混合驱动测试系统设计与构建[J]. 现代化工, 2018, 38(5): 210-214.
[8] 储超, 唐晓龙, 易红宏, 曹雨萌, 李晨露, 李婧颖, 张润草. 电解池材料与结构对固体氧化物电解池脱硝性能的影响[J]. 现代化工, 2018, 38(4): 59-63.
[9] 翟宏菊, 关壬铨, 刘书含, 曹爽, 丁田田, 付祥雪. C3N4基复合结构的合成及应用新进展[J]. 现代化工, 2018, 38(1): 23-25.
[10] 吕旭初, 韩俊, 贺山山, 刘茂祥, 王霜, 张树鹏. 绿色能源电催化电极用氮化碳基纳米材料的设计[J]. 现代化工, 2018, 38(1): 30-34.
[11] 王冰, 侍崇诗, 黄明宇, 陈国钧, 戴国平, 倪红军. 燃料电池供氢系统的研究进展[J]. 现代化工, 2018, 38(1): 35-39,41.
[12] 朱伟, 赵丹, 董延茂, 沈怡, 於俊颖, 谭莹雪. 物化预处理含甾体激素合成类制药废水的研究[J]. 现代化工, 2017, 37(9): 80-85,87.
[13] 王兰英, 庄军平, 周彦斌, 武书彬. 硅钨酸盐催化葡萄糖降解制备乙酰丙酸的研究[J]. 现代化工, 2017, 37(9): 143-145.
[14] 卓露, 汪兴兴, 吕帅帅, 黄明宇, 倪红军. 微生物燃料电池技术的研究进展[J]. 现代化工, 2017, 37(8): 41-44.
[15] 薄涛, 翟洪艳, 季民. 微生物电解池在氢气制备中的应用[J]. 现代化工, 2017, 37(8): 50-54.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn