Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (2): 110-114    DOI: 10.16606/j.cnki.issn0253-4320.2018.02.026
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
定向制备不同尺寸的3D掺氮石墨烯及其表征
李子庆, 赫文秀, 张永强, 刘斌, 蒋梦
内蒙古科技大学化学与化工学院, 内蒙古 包头 014010
Directional preparation and characterization of 3D nitrogen-doped graphene with different sizes
LI Zi-qing, HE Wen-xiu, ZHANG Yong-qiang, LIU Bin, JIANG Meng
School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China
下载:  PDF (4317KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用改进的Hummers方法经冷冻干燥制备氧化石墨(GO),通过温和磁力搅拌、普通超声和大功率超声3种剥离方式,经一步水热法合成了3D掺氮石墨烯。通过FT-IR、XRD、FESEM、EDS、Raman、XPS、TGA、AFM对样品的微观形貌和结构进行表征。结果表明,通过不同的剥离方式可以得到不同形貌、不同尺寸、不同厚度、不同掺氮含量的掺氮石墨烯。温和磁力搅拌不会对片层结构有较大破坏,可制备微米级大尺寸掺氮石墨烯,厚度约为1.1 nm。在普通超声下,掺氮石墨烯片层开始产生孔状结构,厚度约为0.8 nm。在大功率超声波的空化效应作用下,片层剥离程度较普通超声更为明显,更易形成较小尺寸的3D多孔网络结构,厚度约为0.6 nm。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李子庆
赫文秀
张永强
刘斌
蒋梦
关键词:  氧化石墨  磁力搅拌  超声剥离  不同尺寸  掺氮石墨烯    
Abstract: The modified Hummers method is used to prepare graphite oxide (GO) by freeze drying.3D nitrogen-doped graphene is synthesized from GO by one-step hydrothermal method and through three stripping methods including mild magnetic stirring,common ultrasonic and high power ultrasonic,respectively.The microstructure and morphology of the as-produced graphene are characterized by FT-IR,XRD,FESEM,EDS,Raman,XPS,TGA and AFM.The results show that different stripping methods can lead to nitrogen doped graphene with different morphologies,sizes,thicknesses and nitrogen contents.Mild magnetic stirring method will not cause great damages to the lamellar structure but can be used to prepare micron size nitrogen doped graphene with a thickness of about 1.1 nm.By using common ultrasonic stripping method,the lamellar of prepared nitrogen-doped graphene sheet begins to generate pore structure,and its thickness is around 0.8 nm.Under the cavitation effect of high power ultrasound,the stripping degree of lamellar is more obvious than under common ultrasound,and it is easier to form smaller size of 3D porous network structure,the lamellar thickness is about 0.6 nm.
Key words:  graphite oxide    magnetic stirring    ultrasonic stripping    different sizes    nitrogen-doped graphene
收稿日期:  2017-07-26                出版日期:  2018-02-20
TQ127.1+6  
基金资助: 内蒙古自然科学基金(2015MS0208);内蒙古自治区高等学校青年科技英才计划-青年科技领军人才A类项目(NJYT-14-A08);包头市科技计划项目(2015C2004-1,2016-4)
通讯作者:  李子庆(1992-),男,硕士研究生,从事石墨烯改性材料的研究,通讯联系人,2470610971@qq.com。    E-mail:  2470610971@qq.com
引用本文:    
李子庆, 赫文秀, 张永强, 刘斌, 蒋梦. 定向制备不同尺寸的3D掺氮石墨烯及其表征[J]. 现代化工, 2018, 38(2): 110-114.
LI Zi-qing, HE Wen-xiu, ZHANG Yong-qiang, LIU Bin, JIANG Meng. Directional preparation and characterization of 3D nitrogen-doped graphene with different sizes. Modern Chemical Industry, 2018, 38(2): 110-114.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.02.026  或          http://www.xdhg.com.cn/CN/Y2018/V38/I2/110
[1] Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5296):666-669.
[2] Fang Y,L Y Y,Che R,et al.Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets:Synthesis and efficient lithium ion storage[J].Journal of the American Chemical Society,2013,135(4):1524-1530.
[3] Perreeault F,Fonseca De Faria A,Elimelech M.Environmental applications of graphene-based nanomaterials[J].Chemical Society Reviews,2015,44(16):5861-5896.
[4] Xu C,Zhu J L,Yuan R S,et al.More effective use of graphene in photocatalysis by conformal attachment of small sheets to TiO2 spheres[J].Carbon,2016,96:394-402.
[5] Jeon K J,Lee Z,Pollak E,et al.Fluoro graphene:A wide bandgap semiconductor with ultraviolet luminescence[J].ACS Nano,2011,5(2):1042-1046.
[6] Chen W,Yan L,Bangal P R.Chemical reduction of graphene oxide to graphene by sulfur-containing compounds[J].Journal of Physical Chemistry C,2010,114(47):19885-19890.
[7] Shen X,Jiang L,Ji Z,et al.Stable aqueous dispersions of graphene prepared with hexamethylenetetramine as a reductant[J].Journal of Colloid and Interface Science,2011,354(2):493-497.
[8] Zhao L,He R,Rim K T,et al.Visualizing individual nitrogen dopants in monolayer graphene[J].Science,2011,333(6045):999-1003.
[9] Reddy A L M,Srivastava A,Gowda S R,et al.Synthesis of nitrogen-doped graphene films for lithium battery appIication[J].ACS Nano,2010,4(11):6337-6342.
[10] Zhang T Y,Zhang D.Aqueous colloids of graphene oxide nanosheets by exfoliation of graphite oxide without ultrasonication[J].Bulletin of Materials Science,2011,34(1):25-28.
[11] Wei D,Liu Y,Controllable synthesis of graphene and its application[J].Advanced Materials,2010,22(30):3225-3241.
[12] Zhao J,Pei S,Ren W,et al.Efficient preparation of large-area graphene oxide sheets for transparent conductive films[J].Acs Nano,2010,4(9):5245-5252.
[13] Wu Z S,Ren W,Gao L,et al.Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets[J].Nano Research,2010,3(1):16-22.
[14] He M,Jung J,Qiu F,et al.Graphene-based transparent flexible electrodes for polymer solar cells[J].J Mater Chem,2012,22(46):24254-24264.
[15] Cote L J,Franklin K,Jiaxing H.Langmuir-Blodgett assembly of graphite oxide single layers[J].Journal of the American Chemical Society,2009,131(3):1043-1049.
[16] Hou Y,Wen Z H,Cui S M,et al.An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting[J].Advanced Functional Materials,2015,25(6):872-882.
[17] Qian W,Cui X,Hao R,et al.Facile preparation of nitrogen-doped few-layer graphene via supercritical reaction[J].ACS Appl Mater Interfaces,2011,3(7):2259-2264.
[18] He M,Jung J,Qiu F,et al.Graphene-based transparent flexible electrodes for polymer solar cells[J].J Mater Chem,2012,22(46):24254-24264.
[19] Chong S W,Lai C W,Hamid S B A.Green preparation of reduced graphene oxide using a natural reducing agent[J].Ceramics International,2015,41(8):9505-9513.
[20] Cai Minzhen,Thorp D,Adamson D H,et al.Methods of graphite exfoliation[J].Journal of Materials Chemistry,2012,22(48):24992-25002.
[21] Gao X,Jang J,Nagase S.Hydrazine and Thermal reduction of graphene oxide:Reaction mechanisms,product structures,and reaction design[J].Journal of Physical Chemistry C,2009,114(2):832-842.
[1] 张鑫, 王永波, 王林昕, 刘恩周, 胡晓云, 樊君. 氧化石墨烯载药体系负载甲硝唑及体外释放的研究[J]. 现代化工, 2018, 38(9): 127-131.
[2] 许世超, 董凯, 多浩, 朱天哲, 乔阳. 基于光催化技术的VOCs空气净化器的设计及研究[J]. 现代化工, 2018, 38(6): 117-121.
[3] 李欣悦, 高仕谦, 董南巡, 钱飞跃, 张占恩. 磁性氧化石墨烯固相萃取-高效液相色谱质谱法测定水中的氟喹诺酮残留[J]. 现代化工, 2018, 38(3): 233-237.
[4] 李子庆, 赫文秀, 张永强, 刘斌. 不同功率下微波制备掺氮石墨烯及其性能研究[J]. 现代化工, 2018, 38(1): 84-88.
[5] 王一博, 赵九蓬. 3D打印低扭曲度超厚分级孔锂离子电池电极[J]. 现代化工, 2017, 37(12): 118-122.
[6] 杨亚伟, 马靖文, 张凤宝, 李阳. 基于氧化石墨烯的AIE荧光探针对肝素的检测[J]. 现代化工, 2017, 37(12): 201-205.
[7] 丁鹏, 鲁墨弘, 朱劼, 李明时, 单玉华. 掺氮氧化石墨烯二氧化钛复合材料的合成及其光催化活性[J]. 现代化工, 2016, 36(8): 101-104.
[8] 刘金宝, 刘益林, 陈言伟, 蔺华林, 韩生. Fe2O3与氧化石墨烯复合材料在锂电池中应用研究进展[J]. 现代化工, 2016, 36(5): 36-39.
[9] 邹晓娜, 宰学荣, 付玉彬, 庄晓培, 韩金枝. 氧化石墨烯/萘醌改性海泥电池阳极的研究[J]. 现代化工, 2015, 35(8): 79-83.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn