Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2019, Vol. 39 Issue (8): 143-146    DOI: 10.16606/j.cnki.issn0253-4320.2019.08.030
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
NiCo2O4修饰活性炭纤维作为超级电容器正极材料及其性能研究
许世超, 穆春盛, 朱天哲, 乔阳
天津工业大学环境与化学工程学院, 天津 300387
Study on performance of NiCo2O4 modified activated carbon fiber as anode material of supercapacitor
XU Shi-chao, MU Chun-sheng, ZHU Tian-zhe, QIAO Yang
School of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
下载:  PDF (3439KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了改善活性炭纤维的电化学性能、提高比电容,以硝酸镍和硝酸钴为金属源、尿素为碱源,采用水热法对一步活化法制备出的PAN基活性炭纤维(ACF)进行修饰,使其表面均匀负载海胆状的镍钴氧化物(ACF/NiCo2O4),通过扫描电镜、X射线衍射等对样品进行形貌和成分表征,采用三电极体系对材料进行电化学性能测试。结果表明,在1 A/g的电流密度下,其质量比电容达到469.4 F/g,而电压降只有-0.004 5 V,恒流充放电循环5 000圈后,其电容保持率为97.87%,证明ACF/NiCo2O4材料具有较大的比电容和良好的循环稳定性,可用作超级电容器电极材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许世超
穆春盛
朱天哲
乔阳
关键词:  一步活化法  海胆状  超级电容器  电极材料    
Abstract: In order to improve the electrochemical performance of activated carbon fiber and increase its specific capacitance,PAN-based activated carbon fiber (ACF) prepared by one-step activation method is modified by means of hydrothermal method using nickel nitrate and cobalt nitrate as metal sources and urea as alkali source,which has its surface uniformly loaded with urchin-like nickel-cobalt oxide (ACF/NiCo2O4).The morphology and composition of the sample are characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD),and its electrochemical performance is tested by using a three-electrode system.The results show that the mass specific capacitance of the sample reaches 469.4 F·g-1 at a current density of 1 A·g-1,and the voltage drop is only -0.004 5 V.After 5 000 cycles of charge-discharge,the capacitance retention rate is 97.87%,proving that ACF/NiCo2O4 material has a larger specific capacitance and a good cycle stability,and can be used as a good supercapacitor electrode material.
Key words:  one-step activation    urchin-like    supercapacitor    electrode material
收稿日期:  2018-11-10      修回日期:  2019-05-21           出版日期:  2019-08-20
TM53  
基金资助: 天津市自然科学基金项目(12JCZDJC22300);天津市外专局项目基金(Y2012061)
通讯作者:  穆春盛(1990-),男,硕士,研究方向为电化学,通讯联系人,chunshengmu@qq.com。    E-mail:  chunshengmu@qq.com
作者简介:  许世超(1975-),男,博士,副教授,研究方向为电化学,xushichao@tjpu.edu.cn
引用本文:    
许世超, 穆春盛, 朱天哲, 乔阳. NiCo2O4修饰活性炭纤维作为超级电容器正极材料及其性能研究[J]. 现代化工, 2019, 39(8): 143-146.
XU Shi-chao, MU Chun-sheng, ZHU Tian-zhe, QIAO Yang. Study on performance of NiCo2O4 modified activated carbon fiber as anode material of supercapacitor. Modern Chemical Industry, 2019, 39(8): 143-146.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2019.08.030  或          http://www.xdhg.com.cn/CN/Y2019/V39/I8/143
[1] Xiao W,Zhou W,Yu H,et al.Template synthesis of hierarchical mesoporous δ-MnO2 hollow microspheres as electrode material for high-performance symmetric supercapacitor[J].Electrochimica Acta,2018,264:1-11.
[2] Tran V C,Sahoo S,Shim J J.Room-temperature synthesis of NiS hollow spheres on nickel foam for high-performance supercapacitor electrodes[J].Materials Letters,2018,210:105-108.
[3] He X,Li R,Liu J,et al.Hierarchical FeCo2O4@NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors[J].Chemical Engineering Journal,2018,334:1573-1583.
[4] Pendashteh A,Moosavifard S E,Rahmanifar M S,et al.Highly ordered mesoporous CuCo2O4 nanowires,a promising solution for high-performance supercapacitors[J].Chem Mater,2015,27(11):150420104203005.
[5] Guan B,Guo D,Hu L,et al.Facile synthesis of ZnCo2O4 nanowire cluster arrays on Ni foam for high-performance asymmetric supercapacitors[J].Journal of Materials Chemistry A,2014,2(38):16116-16123.
[6] Samantara A K,Kamila S,Ghosh A,et al.Highly ordered 1D NiCo2O4 nanorods on graphene:An efficient dual-functional hybrid materials for electrochemical energy conversion and storage applications[J].Electrochimica Acta,2018,263:147-157.
[7] Xu K,Yang J,Hu J.Synthesis of hollow NiCo2O4 nanospheres with large specific surface area for asymmetric supercapacitors[J].Journal of Colloid and Interface Science,2018,511:456-462.
[8] Liu C,Wu X.NiCo2S4 nanotube arrays grown on flexible carbon fibers as battery-type electrodes for asymmetric supercapacitors[J].Materials Research Bulletin,2018,103:55-62.
[9] Ye X D,Hu J G,Yang Q,et al.Preparation and properties of NiO/AC asymmetric capacitor[J].Journal of Inorganic Materials,2014,29(3):250-256.
[10] Luan Y,Zhang H,Yang F,et al.Rational design of NiCo2S4 nanoparticles@N-doped CNT for hybrid supercapacitor[J].Applied Surface Science,2018,447:165-172.
[11] Wan H,Jiang J,Yu J,et al.NiCo2S4 porous nanotubes synthesis via sacrificial templates:High-performance electrode materials of supercapacitors[J].Cryst Eng Comm,2013,15(38):7649.
[12] Jinlong L,Tongxiang L,Meng Y,et al.Performance comparison of NiCo2O4 and NiCo2S4 formed on Ni foam for supercapacitor[J].Composites Part B:Engineering,2017,123:28-33.
[13] Li D,Gong Y,Pan C.Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors[J].Scientific Reports,2016,6:29788.
[14] Zhao C,Ren F,Cao Y,et al.Facile synthesis of Co(OH)2/Al(OH)3 nanosheets with improved electrochemical properties for asymmetric supercapacitor[J].Journal of Physics and Chemistry of Solids,2018,112:54-60.
[15] Wang J,Zhang Y,Ye J,et al.Facile synthesis of three-dimensional NiCo2O4 with different morphology for supercapacitors[J].RSC Advances,2016,6(74):70077-70084.
[16] Zhang X,Fan X,Yan C,et al.Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide[J].ACS Applied Materials & Interfaces,2012,4(3):1543-1552.
[1] 康孟孟, 赵翰庆, 宋玮, 叶建岐, 李忠. 不同维度的煤基纳米碳材料的制备及储能应用[J]. 现代化工, 2019, 39(8): 49-53.
[2] 史纪峰, 孙明轩. 一步乙醇燃烧法合成C-CeO2超级电容器电极材料[J]. 现代化工, 2019, 39(6): 162-165.
[3] 陈瑶, 宋永辉, 周军, 田宇红, 兰新哲. KOH溶液浸渍法活化处理煤基电极材料的研究[J]. 现代化工, 2019, 39(5): 114-118.
[4] 朱磊, 俞泽民, 周子豪, 朱明亮. 一步水热法制备二氧化钛纳米线-还原氧化石墨烯复合材料及其超级电容器性能研究[J]. 现代化工, 2019, 39(5): 146-150.
[5] 王新海, 马珍珍. 电化学法制备的聚苯胺/石墨烯复合材料的微结构及性能研究[J]. 现代化工, 2019, 39(5): 156-159.
[6] 王钊, 岳红彦, 俞泽民, 高鑫, 姚龙辉, 王宝. 化学气相沉积制备泡沫石墨烯超级电容器电极研究进展[J]. 现代化工, 2018, 38(9): 33-35,37.
[7] 黄海波, 沈勇, 杨明荣, 徐丽慧, 王黎明, 王海洋. 海胆状MnO2/RGO复合材料的制备及吸波性能研究[J]. 现代化工, 2018, 38(6): 154-157,159.
[8] 邵宗明, 刘晓雨, 熊凡. WO3/FeOOH的制备与电化学性能研究[J]. 现代化工, 2018, 38(11): 183-185.
[9] 苏婷, 宋永辉, 兰新哲, 景兴鹏, 周军. 超声辅助活化煤基电极材料的研究[J]. 现代化工, 2018, 38(10): 76-79,81.
[10] 原诗瑶, 侯彬, 周杰. 泡沫镍在电容器和微生物燃料电池方面的应用[J]. 现代化工, 2017, 37(8): 67-71.
[11] 刘志森, 张志远, 徐鑫. 二氧化锰为氧化剂制备多孔石墨烯@聚苯胺超级电容器材料的研究[J]. 现代化工, 2017, 37(7): 117-120.
[12] 温雅琼, 李作鹏, 邢宝岩, 王玉珍, 沈腊珍, 郭永. Ni(OH)2/石墨烯/Co(OH)2电极材料制备及其电容性能研究[J]. 现代化工, 2017, 37(7): 68-73.
[13] 范玉姣, 焦文强, 黄成德. 功能化对石墨纳米片/MnO2复合材料性能的影响[J]. 现代化工, 2017, 37(11): 127-131.
[14] 马骏, 晋日亚, 郑璐, 孙友谊. 自支撑石墨烯/二氧化锰/泡沫镍复合材料的电化学性能[J]. 现代化工, 2016, 36(3): 114-116,118.
[15] 武金珠, 卢丹丹, 张瑞, 朱彦荣, 杨双瑗, 诸荣孙, 伊廷锋. 超级电容器NiCo2O4材料的水热法合成及其电化学性能[J]. 现代化工, 2016, 36(2): 80-82,84.
[1] . [J]. Modern Chemical Industry, 2015, 35(8): 121 -123,125 .
[2] . [J]. Modern Chemical Industry, 2015, 35(8): 151 -154,156 .
[3] . [J]. Modern Chemical Industry, 2015, 35(9): 10 -15 .
[4] . [J]. Modern Chemical Industry, 2015, 35(9): 34 -37,39 .
[5] . [J]. Modern Chemical Industry, 2015, 35(9): 85 -87,89 .
[6] . [J]. Modern Chemical Industry, 2015, 35(9): 128 -130,132 .
[7] . [J]. Modern Chemical Industry, 2015, 35(9): 143 -145 .
[8] . [J]. Modern Chemical Industry, 2015, 35(9): 195 -196 .
[9] . [J]. Modern Chemical Industry, 2015, 35(11): 37 -40,42 .
[10] . [J]. Modern Chemical Industry, 2015, 35(11): 86 -89,91 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn