Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2019, Vol. 39 Issue (7): 156-161    DOI: 10.16606/j.cnki.issn0253-4320.2019.07.032
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
BiOBr/石墨烯/TiO2纳米管阵列薄膜的制备及光电化学性能研究
苑小娇, 孙明轩, 郑朝
上海工程技术大学材料工程学院, 上海 201620
Preparation of BiOBr/graphene/TiO2 nanotube array film and its photoelectrochemical performance
YUAN Xiao-jiao, SUN Ming-xuan, ZHENG Zhao
School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
下载:  PDF (3650KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过水热处理TiO2纳米管阵列和氧化石墨烯制备石墨烯/TiO2纳米管薄膜材料,并进一步连续离子沉积BiOBr来制备BiOBr/石墨烯/TiO2纳米管阵列薄膜材料。利用X射线衍射仪、扫描电子显微镜、X射线电子能谱和紫外-可见漫反射光谱等测试手段对所得样品的物相组成、表面形貌及元素形态和光吸收性能等进行表征。结果表明,TiO2纳米管的表面成功负载了石墨烯和BiOBr纳米片。紫外-可见漫反射吸收光谱表明,BiOBr和石墨烯共同修饰的TiO2纳米管的吸收带边发生明显红移,其可见光吸收性能明显提高。光电电化学性能测试表明,BiOBr和石墨烯的共同修饰有效提高了TiO2纳米管的光电流、光电压和光电转换效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苑小娇
孙明轩
郑朝
关键词:  TiO2纳米管  石墨烯  BiOBr  协同修饰  光电化学性能    
Abstract: Graphene/TiO2 nanotube array film materials,prepared by hydrothermal treatment of TiO2 nanotube arrays and graphene oxide,are further decorated with BiOBr via a successive ion deposition to construct BiOBr/graphene/TiO2,a kind of ternary composite nanotube array film materials.The phase composition,surface morphology,chemical states of elements and optical adsorption property of the as-prepared samples are characterized by X-ray diffractometry (XRD),scanning electron microscopy (SEM),X-ray electron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS).The results disclose that graphene and BiOBr nanosheets are successfully loaded on the surface of TiO2 nanotube arrays.A red-shift of the absorption edge and enhanced light absorption intensity in the UV-Vis DRS are observed for the prepared BiOBr/graphene/TiO2 nanotube arrays in comparison with TiO2 nanotube arrays and graphene/TiO2 nanotube arrays.Moreover,the photoelectrochemical and electrochemical detection results indicate the co-modification of BiOBr and graphene improves the photocurrent,open circuit potential,and photo-conversion efficiency of TiO2 nanotube.
Key words:  TiO2 nanotubes    graphene    BiOBr    co-modification    photoelectrochemical performance
收稿日期:  2018-10-21      修回日期:  2019-05-15           出版日期:  2019-07-20
O649.4  
基金资助: 上海工程技术大学人才计划(2018RC082017);上海市教育委员会科研创新项目(15ZZ092);光催化能源与环境国家重点实验室开放项目(SKLPEE-KF201710),福州大学;上海工程技术大学研究生创新项目(17KY0508)
通讯作者:  孙明轩(1983-),男,博士,副教授,主要研究方向为纳米功能材料的制备、修饰及光电化学和光催化性能研究,通讯联系人,mingxuansun@sues.edu.cn。    E-mail:  mingxuansun@sues.edu.cn
作者简介:  苑小娇(1991-),女,硕士研究生,主要研究方向为先进功能材料的制备及光电化学和光催化性能研究,yuanxiaojiao0713@163.com
引用本文:    
苑小娇, 孙明轩, 郑朝. BiOBr/石墨烯/TiO2纳米管阵列薄膜的制备及光电化学性能研究[J]. 现代化工, 2019, 39(7): 156-161.
YUAN Xiao-jiao, SUN Ming-xuan, ZHENG Zhao. Preparation of BiOBr/graphene/TiO2 nanotube array film and its photoelectrochemical performance. Modern Chemical Industry, 2019, 39(7): 156-161.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2019.07.032  或          http://www.xdhg.com.cn/CN/Y2019/V39/I7/156
[1] Chen X B,Shen S H,Guo L J,et al.Semiconductor-based photocatalytic hydrogen generation[J].Chemical Reviews,2010,110:6503-6570.
[2] Li H,Shen X J,Liu Y D,et al.Facile phase control for hydrothermal synthesis of anatase-rutile TiO2 with enhanced photocatalytic activity[J].Journal of Alloys Compounds,2015,646:380-386.
[3] Bahramian A,Raeissi K,Hakimizad A.An investigation of the characteristics of Al2O3/TiO2 PEO nanocomposite coating[J].Applied Surface Science,2015,351:13-26.
[4] Xue C,Xu X,Yang G D,et al.Comprehensive investigation of the reciprocity of structure and enhanced photocatalytic performance in finned-tube structured TiO2/BiOBr heterojunctions[J].RSC Advances,2015,5:102228-102237.
[5] Sun S F,Sun M X,Fang Y L,et al.One-step in situ calcination synthesis of g-C3N4/N-TiO2 hybrids with enhanced photoactivity[J].RSC Advances 2016,6:13063-13071.
[6] Liu Y Q,Ran H L,Fan J J,et al.Fabrication and photovoltaic performance of niobium doped TiO2 hierarchical microspheres with exposed {001} facets and high specific surface area[J].Applied Surface Science,2017,410:241-248.
[7] Sun M X,Fang Y L,Sun S F,et al.Surface co-modification of TiO2 with N doping and Ag loading for enhanced visible-light photoactivity[J].RSC Advances,2016,6:12272-12279.
[8] 纪文强,孙明轩,徐鹏,等.一步法原位制备碳氮共掺杂TiO2纳米材料及其光催化制氢性能[J].现代化工,2016,36(11):82-85.
[9] Pan L,Shen G Q,Zhang J W,et al.TiO2-ZnO composite sphere decorated with ZnO clusters for effective charge isolation in photocatalysis[J].Industrial Engineering Chemistry Research,2015,54:7226-7232.
[10] Sood S,Mehta S K,Sinha A S K,et al.Bi2O3/TiO2 heterostructures:Synthesis,characterization and their application in solar light mediated photocatalyzed degradation of an antibiotic,ofloxacin[J].Chemical Engineering Journal,2016,290:45-52.
[11] 林小靖,孙明轩,胡梦媛,等.石墨烯修饰氮掺杂TiO2纳米材料的制备及光催化性能[J].材料导报:研究篇,2016,30(9):16-19.
[12] Jo W K,Kumar S,Isaacs M A,et al.Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo Red[J].Applied Catalysis B-Environmental,2017,201:159-168.
[13] Duan F,Wang X F,Tan T T,et al.Highly exposed surface area of {001} facets dominated BiOBr nanosheets with enhanced visible light photocatalytic activity[J].Physics Chemistry Chemical Physics Volume,2016,18:6113-6121.
[14] Wu D,Wang B,Wang B,et al.Visible-light-driven BiOBr nanosheets for highly facet-dependent photocatalytic inactivation of Escherichia coli[J].Journal of Materials Chemistry A,2015,3:15148-15155.
[15] Yao Y,Sun M X,Yuan X J,et al.One-step hydrothermal synthesis of N/Ti3+ co-doping multiphasic TiO2/BiOBr heterojunctions towards enhanced sonocatalytic performance[J].Ultrasonics-Sonochemistry,2018,49:69-78.
[16] Ruan L L,Liu J Q,Zhou Q,et al.A flake-tube structured BiOBr-TiO2 nanotube array heterojunction with enhanced visible light photocatalytic activity[J].New Journal of Chemistry,2014,38:3022-3028.
[17] Sun M X,Wang Y,Fang Y L,et al.Construction of MoS2/CdS/TiO2 ternary composites with enhanced photocatalytic activity and stability[J].Journal of Alloys and Compounds,2016,684:335-341.
[18] Sun S F,Sun M X,Kong Y Y,et al.One-step thermal synthesis of Ag-modified g-C3N4/N-doped TiO2 hybrids with enhanced visible-light photocatalytic activity[J].Journal of Materials Science,2017,52:1183-1193.
[19] Yan X,Xing Z P,Cao Y,et al.In-situ C-N-S-tridoped single crystal black TiO2 nanosheets with exposed {001} facets as efficient visible-light-driven photocatalysts[J].Applied Catalysis B-Environmental,2017,219:572-579.
[20] William S,Hummers J,Richard E,et al.Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80:1339-1339.
[21] Sun M X,Ma X Q,Chen X,et al.A nanocomposite of carbon quantum dots and TiO2 nanotube arrays:Enhancing photoelectrochemical and photocatalytic properties[J].RSC Advances,2014,4:1120-1127.
[22] Fu R R,Zeng X Q,Ma L,et al.Enhanced photocatalytic and photoelectrochemical activities of reduced TiO2-x/BiOCl heterojunctions[J].Journal of Power Sources,2016,312:12-22.
[23] Zhu S R,Wu M K,Zhao W N,et al.Fabrication of heterostructured BiOBr/Bi24O31Br10/TiO2 photocatalyst by pyrolysis of MOF composite for dye degradation[J].Journal of Solid State Chemistry,2017,255:17-26.
[24] Li G S,Lian Z C,Li X,et al.Ionothermal synthesis of black Ti3+-doped single-crystal TiO2 as an active photocatalyst for pollutant degradation and H2 generation[J].Journal of Materials Chemistry A,2015,3:3748-3756.
[25] Semaltianos N G,Logothetidis S,Frangis N,et al.Laser ablation in water:A route to synthesize nanoparticles of titanium monoxide[J].Chemical Physics Letters,2010,496:113-116.
[1] 宋巍, 龙靖文, 刘琪英, 潘成强, 王飞. 石墨烯基催化剂用于生物质转化的研究进展[J]. 现代化工, 2019, 39(7): 22-26,28.
[2] 王辉, 梁伟. 负载Pt的透明TiO2纳米管薄膜的非对称性光电性能[J]. 现代化工, 2019, 39(6): 153-158.
[3] 杨志远, 廖宏斌, 孟茁越, 薛文英, 李银艳. 类石墨烯多孔材料的制备及其气体吸附分离特性[J]. 现代化工, 2019, 39(6): 95-99.
[4] 罗祖云, 林义, 张笛, 洪若瑜. RGO/BaTiO3复合材料的制备与性能研究[J]. 现代化工, 2019, 39(5): 141-145.
[5] 王新海, 马珍珍. 电化学法制备的聚苯胺/石墨烯复合材料的微结构及性能研究[J]. 现代化工, 2019, 39(5): 156-159.
[6] 刘小燕, 高仕谦, 丁阳杰, 张占恩, 张丽君. 离子液体磁性石墨烯-超高效液相色谱串联质谱法测定水中的磺胺类抗生素[J]. 现代化工, 2019, 39(5): 240-244,246.
[7] 高丽媛, 杨宾, 郝梦琳, 刘杰梅. 不同石墨填料对相变材料性能的影响[J]. 现代化工, 2019, 39(4): 85-88.
[8] 唐功庆, 解希铭, 孙攀, 王丽丽, 李绍宁. 改性石墨烯/丁腈橡胶纳米复合材料的制备及性能研究[J]. 现代化工, 2019, 39(2): 181-184.
[9] 陈商奇, 应惠娟, 楼洒. 生物质基石墨烯的制备及应用研究进展[J]. 现代化工, 2019, 39(1): 32-36,38.
[10] 张萍花, 李梦婷, 陈建钧, 王红艳, 史洪伟, 燕云洁, 姜桃. 银负载石墨烯复合材料的制备及光催化性能研究[J]. 现代化工, 2018, 38(9): 81-84,86.
[11] 王钊, 岳红彦, 俞泽民, 高鑫, 姚龙辉, 王宝. 化学气相沉积制备泡沫石墨烯超级电容器电极研究进展[J]. 现代化工, 2018, 38(9): 33-35,37.
[12] 张鑫, 王永波, 王林昕, 刘恩周, 胡晓云, 樊君. 氧化石墨烯载药体系负载甲硝唑及体外释放的研究[J]. 现代化工, 2018, 38(9): 127-131.
[13] 郝文, 周鹏, 余昊霖, 文晓刚. SnS2纳米花/石墨烯锂离子电池负极材料合成及其电化学性能研究[J]. 现代化工, 2018, 38(8): 103-107.
[14] 蔡亭伟, 丁颖, 徐丽慧. 三维石墨烯基光催化剂的研究进展[J]. 现代化工, 2018, 38(8): 17-22.
[15] 张祎曼, 孙豫, 孙万虹, 田松. 石墨烯改性材料在气体吸附分离方面的研究进展[J]. 现代化工, 2018, 38(6): 38-42.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 37 -40,42 .
[2] . [J]. Modern Chemical Industry, 2016, 36(1): 93 -97 .
[3] . [J]. Modern Chemical Industry, 2016, 36(2): 3 -6 .
[4] . [J]. , 2002, 22(6): 0 .
[5] . [J]. , 2002, 22(12): 0 .
[6] . [J]. , 2003, 23(3): 0 .
[7] . [J]. , 2009, 29(11): 0 .
[8] . [J]. , 2010, 30(12): 0 .
[9] . [J]. , 2007, 27(2): 0 .
[10] . [J]. , 2007, 27(2): 0 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn