Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2019, Vol. 39 Issue (6): 50-53    DOI: 10.16606/j.cnki.issn0253-4320.2019.06.010
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
Cu基和Pd基甲醇水蒸气重整制氢催化剂研究进展
王勤1,2, 赵青1, 吴荣生1, 陶新明1, 张宸1
1. 宁波申江科技股份有限公司, 浙江 宁波 315100;
2. 宁波大学博士后流动站, 浙江 宁波 315210
Review on copper- and palladium-based catalysts for methanol steam reforming to produce hydrogen
WANG Qin1,2, ZHAO Qing1, WU Rong-sheng1, TAO Xin-ming1, ZHANG Chen1
1. Ningbo Shenjiang Technology Company Limited, Ningbo 315100, China;
2. Postdoctoral Research Station, Ningbo University, Ningbo 315210, China
下载:  PDF (1315KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 综述了国内外Cu基、Pd基2类甲醇水蒸汽重整制氢催化剂的最新研究进展,分析了催化剂失活的原因,提出了提高催化剂活性、选择性和稳定性的措施。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王勤
赵青
吴荣生
陶新明
张宸
关键词:  甲醇重整  Cu基催化剂  Pd基催化剂  失活  稳定性    
Abstract: This review summarizes the latest research progress in Cu-based and Pd-based catalysts for methanol steam reforming to produce hydrogen in China and in the world,analyzes the reasons of catalyst deactivation,and provides measures to improve the activity,selectivity and stability of the catalysts.
Key words:  methanol reforming    Cu-based catalyst    Pd-based catalyst    deactivation    stability
收稿日期:  2018-10-30      修回日期:  2019-04-01          
ZTFLH:  TQ519  
基金资助: 宁波市鄞州区重大产业技术创新专项(003-201601B90009)
通讯作者:  王勤(1983-),女,博士,工程师,研究方向为燃料电池、金属空气电池等领域,通讯联系人,wangqin_sj@163.com。    E-mail:  wangqin_sj@163.com
引用本文:    
王勤, 赵青, 吴荣生, 陶新明, 张宸. Cu基和Pd基甲醇水蒸气重整制氢催化剂研究进展[J]. 现代化工, 2019, 39(6): 50-53.
WANG Qin, ZHAO Qing, WU Rong-sheng, TAO Xin-ming, ZHANG Chen. Review on copper- and palladium-based catalysts for methanol steam reforming to produce hydrogen. Modern Chemical Industry, 2019, 39(6): 50-53.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2019.06.010  或          http://www.xdhg.com.cn/CN/Y2019/V39/I6/50
[1] 朱俊娥,欧阳洵.质子交换膜燃料电池技术及产业发展概述[J].新材料产业,2018,(5):20-26.
[2] 王吉华,居钰生,易正根,等.燃料电池技术发展及应用现状综述(上)[J].现代车用动力,2018,(2):7-12.
[3] 戴先逢.甲醇重整在燃料电池汽车上的应用研究[J].时代汽车,2018,(5):58-60.
[4] 杜求茂,杨颖,罗显光,等.甲醇重整制氢燃料电池在新能源汽车中应用的适用性分析[J].电力机车与城轨车辆,2017,40(6):13-16.
[5] Kubacka A,Fernández-García M,Martínez-Arias A.Catalytic hydrogen production through WGS or steam reforming of alcohols over Cu,Ni and Co catalysts[J].Applied Catalysis A:General,2016,518:2-17.
[6] 陈明旭,梅占强,陈柯臻,等.Cu基催化剂催化甲醇水蒸气重整制氢研究进展[J].石油化工,2017,46(12):1536-1541.
[7] Talkhoncheh Saeed Khajeh,Haghighi Mohammad,Minaei Shahab,et al.Synthesis of CuO/ZnO/Al2O3/ZrO2/CeO2 nanocatalysts via homogeneous precipitation and combustion methods used in methanol steam reforming for fuel cell grade hydrogen production[J].RSC Advances,2016,6(62):57199-57209.
[8] Ahmadi Faezeh,Haghighi Mohammad,Ajamein Hossein.Sonochemically coprecipitation synthesis of CuO/ZnO/ZrO2/Al2O3 nanocatalyst for fuel cell grade hydrogen production via steam methanol reforming[J].Journal of Molecular Catalysis A:Chemical,2016,421:196-208.
[9] Xi Hongjuan,Hou Xiaoning,Liu Yajie,et al.Cu-Al Spinel oxide as an efficient catalyst for methanol steam reforming[J].Angewandte Chemie International Edition,2014,53(44):11886-11889.
[10] 雷艳秋.Pr和Sm改性的镍基和铜基催化剂在甲醇水蒸气重整制氢中的研究[D].昆明:昆明理工大学,2017.
[11] 杨淑倩,贺建平,张娜,等.稀土掺杂改性对Cu/ZnAl水滑石衍生催化剂甲醇水蒸气重整制氢性能的影响[J].燃料化学学报,2018,46(2):179-188.
[12] Yang Hung-Ming,Liao Ping-Heng.Preparation and activity of Cu/ZnO-CNTs nano-catalyst on steam reforming of methanol[J].Applied Catalysis A:General,2007,317(2):226-233.
[13] Kniep B L,Girgsdies F,Ressler T.Effect of precipitate aging on the microstructural characteristics of Cu/ZnO catalysts for methanol steam reforming[J].Journal of Catalysis,2005,236(1):34-44.
[14] Wang Lu-Cun,Liu Qian,Chen Miao,et al.Structural evolution and catalytic properties of nanostructured Cu/ZrO2 catalysts prepared by oxalate gel-coprecipitation technique[J].The Journal of Physical Chemistry C,2007,111(44):16549-16557.
[15] Patel Sanjay,Pant K K.Activity and stability enhancement of copper-alumina catalysts using cerium and zinc promoters for the selective production of hydrogen via steam reforming of methanol[J].J Power Sources,2006,159(1):139-143.
[16] Xiong Guangwei,Luo Laitao,Li Changquan,et al.Synthesis of mesoporous ZnO (m-ZnO) and catalytic performance of the Pd/m-ZnO catalyst for methanol steam reforming[J].Energy & Fuels,2009,23(3):1342-1346.
[17] Chin Ya-Huei,Wang Yong,Dagle Robert A,et al.Methanol steam reforming over Pd/ZnO:Catalyst preparation and pretreatment studies[J].Fuel Processing Technology,2003,83(1):193-201.
[18] Karim Ayman,Conant Travis,Datye Abhaya.The role of PdZn alloy formation and particle size on the selectivity for steam reforming of methanol[J].Journal of Catalysis,2006,243(2):420-427.
[19] Zhang He,Sun Junming,Dagle Vanessa L,et al.Influence of ZnO facets on Pd/ZnO catalysts for methanol steam reforming[J].ACS Catalysis,2014,4(7):2379-2386.
[20] Liu Shetian,Takahashi Katsumi,Uematsu Kazuo,et al.Hydrogen production by oxidative methanol reforming on Pd/ZnO[J].Applied Catalysis A:General,2005,283(1):125-135.
[21] Liu Shetian,Takahashi Katsumi,Ayabe Muneo.Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst:Effects of Pd loading[J].Catalysis Today,2003,87(1):247-253.
[22] Dagle Robert A,Chin Ya-Huei,Wang Yong.The effects of PdZn crystallite size on methanol steam reforming[J].Topics in Catalysis,2007,46(3):358-362.
[23] Wang Yanhua,Zhang Jingchang,Xu Hengyong,et al.Reduction of Pd/ZnO catalyst and its catalytic activity for steam reforming of methanol[J].Chin J Catal,2007,28(3):234-238.
[24] Azenha C S R,Mateos-Pedrero C,Queirós S,et al.Innovative ZrO2-supported CuPd catalysts for the selective production of hydrogen from methanol steam reforming[J].Applied Catalysis B:Environmental,2017,203:400-407.
[25] Mayr Lukas,Lorenz Harald,Armbrüster Marc,et al.The catalytic properties of thin film Pd-rich GaPd2 in methanol steam reforming[J].Journal of Catalysis,2014,309:231-240.
[26] Föttinger Karin.The effect of CO on intermetallic PdZn/ZnO and Pd2Ga/Ga2O3 methanol steam reforming catalysts:A comparative study[J].Catalysis Today,2013,208:106-112.
[27] Conant Travis,Karim Ayman M,Lebarbier Vanessa,et al.Stability of bimetallic Pd-Zn catalysts for the steam reforming of methanol[J].Journal of Catalysis,2008,257(1):64-70.
[28] Suwa Y,Ito S I,Kameoka S,et al.Comparative study between Zn-Pd/C and Pd/ZnO catalysts for steam reforming of methanol[J].Applied Catalysis A:General,2004,267(1):9-16.
[1] 宋爽, 高凤雨, 唐晓龙, 易红宏, 于庆君, 赵顺征. 含氨废气的催化氧化研究进展[J]. 现代化工, 2019, 39(6): 31-35.
[2] 席珍珍, 王瑞齐, 宋志成, 郭永刚, 吴翔. 钙钛矿太阳能电池研究进展[J]. 现代化工, 2019, 39(5): 66-70.
[3] 李晓斌, 胡程程, 陈颖, 陈祥迎, 李平, 黄先胜. 乙酰丙酮钙的控制合成与PVC热稳定性能研究[J]. 现代化工, 2019, 39(5): 151-155.
[4] 柳滢春, 郭建维, 罗涛, 王伟彬. 金刚烷改性咔唑系列蓝光聚合物的合成与性能对比分析[J]. 现代化工, 2019, 39(2): 130-135,137.
[5] 李文博, 李世友, 张宇, 梁有维. 超高浓度电解液的研究进展[J]. 现代化工, 2019, 39(2): 14-17.
[6] 徐珍珍, 祝志峰, 李伟, 张朝辉. 季铵醚化-辛烯基琥珀酸酯化淀粉浆料的稳定性及生物降解性[J]. 现代化工, 2018, 38(7): 107-111.
[7] 郑秋闿, 范晶晶. 二氢杨梅素对聚丙烯的稳定作用[J]. 现代化工, 2018, 38(5): 116-118,120.
[8] 王玉明, 张欢欢, 白鹏, 郭翔海. 金属有机骨架材料MIL-101(Cr)在醋酸溶液中结构稳定性的研究[J]. 现代化工, 2018, 38(3): 129-132,134.
[9] 黄思琦, 邓风, 张睿, 佘谱颖, 艾乐仙. 好氧颗粒污泥培养及其稳定性研究[J]. 现代化工, 2018, 38(2): 106-109.
[10] 祝龙生, 崔爱军, 朱晨浩, 韦梅峻, 陈群, 何明阳. 丁二酸酐对聚(乙烯环己烯碳酸酯)的扩链改性研究[J]. 现代化工, 2018, 38(12): 114-118,120.
[11] 黄骁, 李水荣, 浦云川, 王夺, 叶跃元, 刘运权. 车载甲醇在线重整制氢高性能铜锌铝催化剂的研究[J]. 现代化工, 2018, 38(11): 115-120.
[12] 李正义, 邵丹迪, 徐德锋, 何浩明, 孙小强. 二甲基姜黄素脂质体的制备及性能研究[J]. 现代化工, 2018, 38(11): 132-135.
[13] 张曼莹, 刘姿铔, 邬艳君. 生物纳米银稳定性及抗菌性能研究[J]. 现代化工, 2018, 38(10): 109-113.
[14] 张绒, 李小瑞, 马国艳. 烃溶性丙烯酸酯共聚物的制备及性能表征[J]. 现代化工, 2018, 38(1): 141-144.
[15] 李凯斌, 杨智婷, 周春生, 任有良, 李仲谨. 金尾矿用量对聚氨酯性能的影响[J]. 现代化工, 2017, 37(9): 123-126.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn