Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2019, Vol. 39 Issue (5): 66-70    DOI: 10.16606/j.cnki.issn0253-4320.2019.05.015
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
钙钛矿太阳能电池研究进展
席珍珍1, 王瑞齐2, 宋志成1, 郭永刚1, 吴翔1
1. 国家电投集团西安太阳能电力有限公司, 陕西 西安 710010;
2. 西北工业大学理学院, 陕西 西安 710129
Progressing on perovskite-based solar cells
XI Zhen-zhen1, WANG Rui-qi2, SONG Zhi-cheng1, GUO Yong-gang1, WU Xiang1
1. SPIC Xi'an Solar Power Co., Ltd., Xi'an 710010, China;
2. School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an 710129, China
下载:  PDF (1684KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对钙钛矿太阳能电池成本低廉、光电转换效率高、商业潜力巨大等特点,对无铅、高稳定性和叠层钙钛矿电池以及组件发展进行了综述,并对钙钛矿太阳能电池以及组件未来研究趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
席珍珍
王瑞齐
宋志成
郭永刚
吴翔
关键词:  钙钛矿太阳能电池  无铅化  稳定性  叠层电池    
Abstract: This paper focuses on the latest research development of lead-free,super stable and laminated perovskite-based solar cell and module in recent years,owing to its low cost,high photoelectric conversion efficiency and huge commercial potential.Prospects for future research trends of perovskite-based solar cells and module are also presented.
Key words:  perovskite-based solar cell    lead-free    stability    laminated solar cells
收稿日期:  2018-10-18      修回日期:  2019-03-01          
ZTFLH:  TQ174  
通讯作者:  席珍珍(1993-),女,硕士,研究方向为钙钛矿太阳能电池,通讯联系人,18710368672@163.com。   
引用本文:    
席珍珍, 王瑞齐, 宋志成, 郭永刚, 吴翔. 钙钛矿太阳能电池研究进展[J]. 现代化工, 2019, 39(5): 66-70.
XI Zhen-zhen, WANG Rui-qi, SONG Zhi-cheng, GUO Yong-gang, WU Xiang. Progressing on perovskite-based solar cells. Modern Chemical Industry, 2019, 39(5): 66-70.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2019.05.015  或          http://www.xdhg.com.cn/CN/Y2019/V39/I5/66
[1] Kojima A,Teshima K,Shirai Y,et al.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J].Journal of the American Chemical Society,2009,131(17):6050-6051.
[2] Gujar T P,Unger T,Schönleber A,et al.The role of PbI2 in CH3NH3PbI3 perovskite stability,solar cell parameters and device degradation[J].Physical Chemistry Chemical Physics,2018,20(1):605-614.
[3] Hao F,Stoumpos C C,Cao D H,et al.Lead-free solid-state organic-inorganic halide perovskite solar cells[J].Nature Photonics,2014,8(6):489-494.
[4] Ran C,Xi J,Gao W,et al.Bilateral Interface engineering toward efficient 2D-3D bulk heterojunction tin halide lead-Free perovskite solar cells[J].ACS Energy Letters,2018,3(3):713-721.
[5] Gupta S,Bendikov T,Hodes G,et al.CsSnBr3,A lead-free halide perovskite for long-term solar cell application:Insights on SnF2 addition[J].ACS Energy Letters,2016,1(5):1028-1033.
[6] Karuppuswamy P,Boopathi K M,Mohapatra A,et al.Role of a hydrophobic scaffold in controlling the crystallization of methylammonium antimony iodide for efficient lead-free perovskite solar cells[J].Nano Energy,2018,45:330-336.
[7] Adonin S A,Frolova L A,Sokolov M N,et al.Antimony (Ⅴ) complex halides:Lead-Free perovskite-like materials for hybrid solar cells[J].Advanced Energy Materials,2018,8(6):1701140.
[8] Wu C,Zhang Q,Liu Y,et al.The dawn of lead-free perovskite solar cell:Highly stable double perovskite Cs2 AgBiBr6 film[J].Advanced Science,2018,5(3):1700759.
[9] Moyez S A,Roy S.Tailoring the surface morphology with annealing temperature of the lead free perovskite solar cell,CH3NH3SnCl3 and its relation to the cell performance[J].Materials Today Proceedings,2017,4(14):12657-12660.
[10] Zhao Z,Gu F,Li Y,et al.Mixed-Organic-Cation tin iodide for Lead-free perovskite solar cells with an efficiency of 8.12%[J].Advanced Science,2017,4(11):1700204.
[11] Wang H,Tian J,Jiang K,et al.Fabrication of methylammonium bismuth iodide through interdiffusion of solution-processed BiI3/CH3NH3I stacking layers[J].RSC Advances,2017,7(69):43826-43830.
[12] Cortecchia D,Dewi H A,Yin J,et al.Lead-Free MA2CuClxBr4-x hybrid perovskites[J].Inorganic Chemistry,2016,55(3):1044-1052.
[13] Nie R,Mehta A,Park B,et al.Mixed sulfur and iodide-based Lead-free perovskite solar cells[J].Journal of the American Chemical Society,2018,140(3):872-875.
[14] Jiang F,Yang D,Jiang Y,et al.Chlorine-Incorporation-Induced formation of the layered phase for antimony-based Lead-free perovskite solar cells[J].Journal of the American Chemical Society,2018,140(3):1019-1027.
[15] Tsai H,Nie W,Blancon J,et al.High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells[J].Nature,2016,536(7616):312-316.
[16] Watson B L,Rolston N,Printz A D,et al.Scaffold-reinforced perovskite compound solar cells[J].Energy & Environmental Science,2017,10(12):10.1039/C7EE02185B.
[17] Qiu L,Ono L K,Jiang Y,et al.Engineering Interface Structure to improve efficiency and stability of organometal halide perovskite solar cells[J].The Journal of Physical Chemistry B,2017,122(2):511-520.
[18] Kim G,Jang H,Yoon Y J,et al.Fluorine functionalized graphene nano platelets for highly stable inverted perovskite solar cells[J].Nano Letters,2017,17(10):6385-6390.
[19] Liu X,Liu Z,Sun B,et al.17.46% efficient and highly stable carbon-based planar perovskite solar cells employing Ni-doped rutile TiO2 as electron transport layer[J].Nano Energy,2018,50:201-211.
[20] Wu Y,Shi X,Ding X,et al.Incorporating 4-tert-butylpyridine in an antisolvent:A facile approach to obtain highly efficient and stable perovskite solar cells[J].ACS Applied Materials & Interfaces,2018,10(4):3602-3608.
[21] Meng X,Ho C H Y,Xiao S,et al.Molecular design enabled reduction of interface trap density affords highly efficient and stable perovskite solar cells with over 83% fill factor[J].Nano Energy,2018,52:300-306.
[22] Wang F,Shimazaki A,Yang F,et al.Highly efficient and stable perovskite solar cells by interfacial engineering using solution-processed polymer layer[J].The Journal of Physical Chemistry C,2017,121(3):1562-1568.
[23] Jung S K,Jin H H,Lee D W,et al.Nonfullerene electron transporting material based on naphthalene diimide small molecule for highly stable perovskite solar cells with efficiency exceeding 20%[J].Advanced Functional Materials,2018,28(20):1800346.
[24] Yang W S,Park B W,Jung E H,et al.Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells[J].Science,2017,356(6345):1376-1379.
[25] Bush K A,Palmstrom A F,Yu Z J,et al.23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability[J].Nature Energy,2017,2(4):17009.
[26] Sahli F,Werner J R M,Kamino B A,et al.Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency[J].Nature Materials,2018,10.1038/s41563-018-0115-4.
[27] Peng J,Duong T,Zhou X,et al.Efficient indium doped TiOx electron transport layers for high performance perovskite solar cells and perovskite/silicon tandems[J].Advanced Energy Materials,2016,7(4):10.1002/aenm.201601768.
[28] Duong T,Wu Y,Shen H,et al.Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency[J].Advanced Energy Materials,2017,7(14):1700228.
[29] Razza S,Di Giacomo F,Matteocci F,et al.Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process[J].Journal of Power Sources,2015,277:286-291.
[30] Chen H,Ye F,Tang W,et al.A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules[J].Nature,2017,550(5):92-95.
[1] 李文博, 李世友, 张宇, 梁有维. 超高浓度电解液的研究进展[J]. 现代化工, 2019, 39(2): 14-17.
[2] 柳滢春, 郭建维, 罗涛, 王伟彬. 金刚烷改性咔唑系列蓝光聚合物的合成与性能对比分析[J]. 现代化工, 2019, 39(2): 130-135,137.
[3] 徐珍珍, 祝志峰, 李伟, 张朝辉. 季铵醚化-辛烯基琥珀酸酯化淀粉浆料的稳定性及生物降解性[J]. 现代化工, 2018, 38(7): 107-111.
[4] 郑秋闿, 范晶晶. 二氢杨梅素对聚丙烯的稳定作用[J]. 现代化工, 2018, 38(5): 116-118,120.
[5] 李新利, 陈永超, 李丽华, 顾永军, 任凤章, 黄金亮. 新型钙钛矿太阳能电池J-V滞回分析[J]. 现代化工, 2018, 38(4): 50-54.
[6] 王玉明, 张欢欢, 白鹏, 郭翔海. 金属有机骨架材料MIL-101(Cr)在醋酸溶液中结构稳定性的研究[J]. 现代化工, 2018, 38(3): 129-132,134.
[7] 黄思琦, 邓风, 张睿, 佘谱颖, 艾乐仙. 好氧颗粒污泥培养及其稳定性研究[J]. 现代化工, 2018, 38(2): 106-109.
[8] 祝龙生, 崔爱军, 朱晨浩, 韦梅峻, 陈群, 何明阳. 丁二酸酐对聚(乙烯环己烯碳酸酯)的扩链改性研究[J]. 现代化工, 2018, 38(12): 114-118,120.
[9] 张然. 钙钛矿太阳能电池中TiO2电荷传输性能调控的研究[J]. 现代化工, 2018, 38(11): 102-106.
[10] 黄骁, 李水荣, 浦云川, 王夺, 叶跃元, 刘运权. 车载甲醇在线重整制氢高性能铜锌铝催化剂的研究[J]. 现代化工, 2018, 38(11): 115-120.
[11] 李正义, 邵丹迪, 徐德锋, 何浩明, 孙小强. 二甲基姜黄素脂质体的制备及性能研究[J]. 现代化工, 2018, 38(11): 132-135.
[12] 张曼莹, 刘姿铔, 邬艳君. 生物纳米银稳定性及抗菌性能研究[J]. 现代化工, 2018, 38(10): 109-113.
[13] 张绒, 李小瑞, 马国艳. 烃溶性丙烯酸酯共聚物的制备及性能表征[J]. 现代化工, 2018, 38(1): 141-144.
[14] 李凯斌, 杨智婷, 周春生, 任有良, 李仲谨. 金尾矿用量对聚氨酯性能的影响[J]. 现代化工, 2017, 37(9): 123-126.
[15] 李林, 樊乙均, 何维, 王煦. 一种聚合物/蒙脱土复合堵水剂的研制[J]. 现代化工, 2017, 37(8): 135-139.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn