Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2019, Vol. 39 Issue (3): 166-170    DOI: 10.16606/j.cnki.issn0253-4320.2019.03.037
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
Cu-Mg-Al催化剂催化甲醇裂解制氢的研究
包喆宇1, 朱明1,2, 杜泽宇1, 陈晓蓉1, 梅华1,2
1. 南京工业大学化工学院, 江苏 南京 210009;
2. 南京(诺盟化工)催化氢化工程技术研究中心, 江苏 南京 210009
Study on catalytic performance of Cu-Mg-Al catalyst for hydrogen production by methanol cracking
BAO Zhe-yu1, ZHU Ming1,2, DU Ze-yu1, CHEN Xiao-rong1, MEI Hua1,2
1. College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China;
2. Catalytic Hydrogenation Engineering Technology Research Center, Jiangsu Nuomeng Chemical Co., Ltd., Nanjing 210009, China
下载:  PDF (1485KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用共沉淀法制备了一系列不同铜镁铝摩尔比的Cu-Mg-Al催化剂,并用于固定床上甲醇裂解制氢的研究。采用BET、XRD、H2-TPR和CO2-TPD等表征手段对催化剂的结构和物化性质进行表征,并分析其对甲醇制氢反应催化性能的影响。结果表明,以1∶2∶1的铜镁铝摩尔比制得的催化剂对甲醇裂解制氢反应具有较高的催化活性,可改善前驱体的结晶度,增大催化剂的比表面积,增强催化剂的可还原性和碱性,从而提高了甲醇裂解制氢的转化率和气体收率,并抑制了液相副产物的生成。使用该催化剂,在压力为1.0 MPa、反应温度为280℃、体积空速为0.5 h-1的反应条件下,甲醇的转化率为99.28%,气体收率为97.75%,液相副产物质量分数为1.25%,反应稳定运行180 h后催化剂未发现明显失活。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
包喆宇
朱明
杜泽宇
陈晓蓉
梅华
关键词:  甲醇裂解  制氢  Cu-Mg-Al催化剂  共沉淀法    
Abstract: A series of Cu-Mg-Al catalysts with different Cu/Mg/Al molar ratio are prepared via co-precipitation method.Their catalytic performance for hydrogen production by methanol cracking is investigated in a fixed bed rector and their structure and physic-chemical properties are characterized by BET,XRD,H2-TPR,CO2-TPD,etc.The results show that Cu-Mg-Al catalyst with a Cu/Mg/Al molar ratio of 1:2:1 can enhance catalytic performance for hydrogen production by methanol cracking because it has an increased crystallinity of the precursor,a larger surface area,an enhanced reducibility and an improved alkalinity.The conversion rate of methanol can reach 99.28%,the gas yield can achieve 97.75% and the content of byproducts in liquid phase is as low as 1.25% when the reaction is performed over Cu1Mg2Al1 catalyst under the reaction conditions that the pressure is 1.0 MPa,reaction temperature at 280℃ and volume space velocity at 0.5 h-1.After experiencing 180 h of reaction,the catalyst does not show deactivation in the system.
Key words:  methanol cracking    hydrogen production    Cu-Mg-Al catalyst    co-precipitation method
收稿日期:  2018-06-11      修回日期:  2019-01-07           出版日期:  2019-03-20
ZTFLH:  TQ426.8  
  O643.38  
通讯作者:  朱明(1984-),男,博士,讲师,研究方向为化工过程的强化,通讯联系人,Averyisgood@163.com。    E-mail:  Averyisgood@163.com
作者简介:  包喆宇(1994-),男,硕士研究生,研究方向为铜基催化剂的制备及应用,m15895925038@163.com
引用本文:    
包喆宇, 朱明, 杜泽宇, 陈晓蓉, 梅华. Cu-Mg-Al催化剂催化甲醇裂解制氢的研究[J]. 现代化工, 2019, 39(3): 166-170.
BAO Zhe-yu, ZHU Ming, DU Ze-yu, CHEN Xiao-rong, MEI Hua. Study on catalytic performance of Cu-Mg-Al catalyst for hydrogen production by methanol cracking. Modern Chemical Industry, 2019, 39(3): 166-170.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2019.03.037  或          http://www.xdhg.com.cn/CN/Y2019/V39/I3/166
[1] Momirlan M,Veziroglu T N.Current status of hydrogen energy[J].Renewable & Sustainable Energy Reviews,2002,6(1-2):141-179.
[2] 倪萌,Leung M K H,Sumathy K.电解水制氢技术进展[J].能源环境保护,2004,18(5):5-9.
[3] Raróg-Pilecka W,Szmigiel D,Kowalczyk Z,et al.Ammonia decomposition over the carbon-based ruthenium catalyst promoted with barium or cesium[J].Journal of Catalysis,2003,218(2):465-469.
[4] Patel S,Pant K K.Selective production of hydrogen via oxidative steam reforming of methanol using Cu-Zn-Ce-Al oxide catalysts[J].Chemical Engineering Science,2007,62(18-20):5436-5443.
[5] Ilinich O,Ruettinger W,Liu X.Cu-Al2O3-CuAl2O4 water-gas shift catalyst for hydrogen production in fuel cell applications:Mechanism of deactivation under start-stop operating conditions[J].Journal of Catalysis,2007,247(1):112-118.
[6] Wang X,Gorte R J.A study of steam reforming of hydrocarbon fuels on Pd/ceria[J].Applied Catalysis A General,2002,224(1):209-218.
[7] Sá S,Silva H,Brandão L,et al.Catalysts for methanol steam reforming-A review[J].Applied Catalysis B Environmental,2010,99(1):43-57.
[8] Matsumura Y,Tanaka K,Tode N,et al.Catalytic methanol decomposition to carbon monoxide and hydrogen over nickel supported on silica[J].Journal of Molecular Catalysis A Chemical,2000,152(1):157-165.
[9] Shen G C,S.I F,Matsumoto S,et al.Steam reforming of methanol on binary Cu/ZnO catalysts:Effects of preparation condition upon precursors,surface structure and catalytic activity[J].Journal of Molecular Catalysis A Chemical,1997,124(2):123-136.
[10] Velu S,Suzuki K,Osaki T.Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl-ayered double hydroxides[J].Catalysis Letters,1999,62(2-4):159-167.
[11] 周性东,陈晓蓉,梅华.MgO改性CuZnAl催化剂上甲醇裂解制氢[J].精细化工,2016,33(5):541-545.
[12] Zhang S,Liu Q,Fan G,et al.Highly-dispersed copper-based catalysts from Cu-Zn-Al layered double hydroxide precursor for gas-phase hydrogenation of dimethyl oxalate to ethylene glycol[J].Catalysis Letters,2012,142(9):1121-1127.
[13] 申延明,吴静,唐杨军,等.CuMgAl类水滑石的制备与表征(英文)[J].硅酸盐学报,2009,37(2):285-290.
[14] Zhe-Ming N I,Xue J L.Synthesis of CuMgAl layered double hydroxides for efficient photocatalysis of rhodamine B[J].Chemical Journal of Chinese Universities,2013,34(3):503-508.
[15] Feng,A Y J,Li B,et al.Synthesis and structural analysis of Cu-Ni-Mg-Al-CO3 hydrotalcite-like materials[J].Acta Chimica Sinica,2003,61(1):78-83.
[16] Hui Z.Studies on structures and properties of MgAl and MgFe layered double hydroxides[J].Chinese Journal of Inorganic Chemistry,2002,18(8):833-838.
[17] 冯拥军,李殿卿,李春喜,等.Cu-Ni-Mg-Al-CO3四元水滑石的合成及结构分析[J].化学学报,2003,61(1):78-83.
[18] Chen T,Huifang X U,Wang Y,et al.Structural evolvement of heating treatment of Mg/Al-LDH and preparation of mineral mesoporous materials[J].Acta Geologica Sinica English Edition,2006,80(2):170-174.
[19] Kannan S,Dubey A,Knozinger H.Synthesis and characterization of CuMgAl ternary hydrotalcites as catalysts for the hydroxylation of phenol[J].Journal of Catalysis,2005,231(2):381-392.
[20] 温斌,何鸣元,宋家庆,等.含铜类水滑石催化材料热分解过程的研究[J].无机化学学报,2000,16(1):58-62.
[21] 张国强,李集伟,杨乐夫,等.阳离子掺杂水滑石的制备及其性质研究[J].物理化学学报,2006,22(2):146-151.
[22] 杨行远,徐广通,卢立军,等.TPR技术及其在催化研究中的应用现状[J].现代科学仪器,2012,(6):57-61.
[1] 韩建, 孔熙瑞, 张立波. Ni/Al2O3催化剂的制备及其催化NH3分解性能研究[J]. 现代化工, 2019, 39(3): 127-130.
[2] 张宁, 刘志伟, 刘有智. 共沉淀法制备钴锰层状双金属氢氧化物及其电化学性能[J]. 现代化工, 2019, 39(2): 68-73.
[3] 冯耀华, 李春雷, 艾灵. 锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2的产业化工艺研究[J]. 现代化工, 2018, 38(9): 174-179.
[4] 李晓静, 王一双, 陈明强, 梁添, 周中山, 杨忠连. Ni/La-SEP催化剂对生物油模型物催化重整制氢的影响[J]. 现代化工, 2018, 38(7): 84-88.
[5] 杨琦, 苏伟, 姚兰, 孙艳. 高效液相催化电解葡萄糖制氢过程研究[J]. 现代化工, 2018, 38(7): 150-153,155.
[6] 田伟, 阎富生, 黄永红, 李亚晴, 杜圣飞, 梁丕荣. 碱土金属对石油焦直接制氢的模拟分析[J]. 现代化工, 2018, 38(7): 208-213.
[7] 李福健, 成少安. 微生物电解制氢反应器的并联堆叠放大[J]. 现代化工, 2018, 38(6): 162-166.
[8] 刘吉军, 李明玉, 卢峰, 何亮明, 莫爵亭. 共沉淀法制备氧化铁黑的影响因素研究[J]. 现代化工, 2018, 38(2): 139-143.
[9] 李翠芹, 陈前林, 江祥红, 李欢. Pr掺杂对CaMnO3热电材料高温电输运性能的影响[J]. 现代化工, 2018, 38(12): 137-140.
[10] 张杰, 李会鹏, 赵华, 蔡天凤. 高比表面积g-C3N4的制备及其在光催化制氢中的应用研究进展[J]. 现代化工, 2018, 38(11): 67-71.
[11] 黄骁, 李水荣, 浦云川, 王夺, 叶跃元, 刘运权. 车载甲醇在线重整制氢高性能铜锌铝催化剂的研究[J]. 现代化工, 2018, 38(11): 115-120.
[12] 王照成, 乔昱焱, 赵保林, 李繁荣. 水煤浆气化制氢配套变换流程对比分析[J]. 现代化工, 2018, 38(10): 231-234,236.
[13] 翟宏菊, 关壬铨, 刘书含, 曹爽, 丁田田, 付祥雪. C3N4基复合结构的合成及应用新进展[J]. 现代化工, 2018, 38(1): 23-25.
[14] 杨婕, 陈明强, 王一双, 杨忠连, 刘少敏, 梁添. Ni-Fe/HZSM-5水蒸汽催化重整间甲酚制氢研究[J]. 现代化工, 2016, 36(8): 146-149.
[15] 万子岸, 高飞, 周华群, 孔繁华, 范明. 甲烷水蒸汽重整反应制氢催化剂的研究进展[J]. 现代化工, 2016, 36(5): 48-52.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn