Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2019, Vol. 39 Issue (2): 79-82,84    DOI: 10.16606/j.cnki.issn0253-4320.2019.02.018
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
FW-200合成微孔-介孔SAPO-34分子筛及其在MTO中的应用
吴晓娜1, 孙娜1,2, 吴海琳1, 杨占旭1, 王海彦1,2
1. 辽宁石油化工大学化学化工与环境学部, 辽宁 抚顺 113001;
2. 中国石油大学(华东)化学工程学院, 山东 青岛 266580
Synthesis of mes-microporous SAPO-34 molecular sieve via FW-200 and its application in MTO
WU Xiao-na1, SUN Na1,2, WU Hai-lin1, YANG Zhan-xu1, WANG Hai-yan1,2
1. College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China;
2. College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
下载:  PDF (2918KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对SAPO-34在甲醇制烯烃过程中易失活的问题,考察了水热合成过程中在凝胶中添加不同质量分数的FW-200对SAPO-34的孔径、形貌、酸性及甲醇制烯烃性能的影响。并利用XRD、SEM、NH3-TPD等手段对合成材料进行表征。以甲醇为原料对mes-SAPO-34分子筛的MTO性能进行了研究。结果表明,当碳模板的质量分数达到8%时,SAPO-34分子筛的晶体结构与结晶度未受到明显的影响,此时分子筛拥有最多的介孔和最大的介孔孔容;酸性分布最佳,在甲醇制烯烃的反应中表现出更为优异的性能,催化剂的寿命最长,双烯收率达到86.77%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴晓娜
孙娜
吴海琳
杨占旭
王海彦
关键词:  微孔-介孔  SAPO-34  FW-200  MTO    
Abstract: In order to solve the problem of the deactivation of SAPO-34 in the process of methanol to olefins (MTO),different amount of FW-200 are added in the gel during the hydrothermal synthesis process.The effects of different addition amounts of FW-200 on SAPO-34 catalyst's pore diameter,morphology,acidity and catalytic performance in MTO are studied.The synthesized samples are characterized by XRD,SEM and NH3-TPD.The performance of mes-SAPO-34 molecular sieve in MTO is studied with methanol as raw material.The result indicates that when the adding amount of carbon template reaches 8%,the crystal structure and crystallinity of SAPO-34 molecular sieve is not affected significantly while the molecular sieve have the most mesoporous and the largest mesoporous volume.Meanwhile,its acid distribution reaches the best and its performance exhibits better in MTO.Moreover,the catalyst has the longest service life and the total yield of ethylene and propylene can reach 86.77%.
Key words:  micropore-mesoporous    SAPO-34    FW-200    MTO
收稿日期:  2018-06-06      修回日期:  2018-12-09          
ZTFLH:  O643.36  
基金资助: 国家自然科学基金项目(2016-Z0030)
通讯作者:  王海彦(1962-),男,博士,教授,研究方向为清洁能源生产工艺、新型催化材料与催化剂,通讯联系人,fswhy@126.com。    E-mail:  fswhy@126.com
作者简介:  吴晓娜(1993-),女,硕士研究生,研究方向为清洁能源生产工艺,812384572@qq.com
引用本文:    
吴晓娜, 孙娜, 吴海琳, 杨占旭, 王海彦. FW-200合成微孔-介孔SAPO-34分子筛及其在MTO中的应用[J]. 现代化工, 2019, 39(2): 79-82,84.
WU Xiao-na, SUN Na, WU Hai-lin, YANG Zhan-xu, WANG Hai-yan. Synthesis of mes-microporous SAPO-34 molecular sieve via FW-200 and its application in MTO. Modern Chemical Industry, 2019, 39(2): 79-82,84.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2019.02.018  或          http://www.xdhg.com.cn/CN/Y2019/V39/I2/79
[1] Chen N Y,Degnan T F.Industrial catalytic application of zeolites[J].Chemical Engineering Progress,1988,84(2):32-41.
[2] Corma A.Inorganic solid acids and their use in acid-catalyzed hydrocarbon reaction[J].Chemical Reviews,1995(3):559-614.
[3] Serrano D P,Escola J M,Pizarro P.Synthesis strategies in the search for hierarchical zeolites[J].Chemical Society Reviews,2013,42(9):4004-4035.
[4] Janssen A H,Koster A J,de Jong K P.Three-dimensional transmission electron microscopic observations of mesopores in dealuminated zeolite Y[J].Angewante Chemie International Edition,2001,40(6):1102-1104.
[5] Corma A.From microporous to mesoporous molecular sieve mMaterials and their use in catalysis[J].Chemical Review,1997,97(6):2373-2419.
[6] Čejka J,Bekkum H V.Zeolites and ordered mesoporous materials[M].Amsterdam:Elsevier,2005.
[7] Van Speybroeck V,De Wispelaere K,Van der Mynsbrugge J,et al.Insight into the formation and reactivity of framework-bound methoxide species in H-ZSM-5 from static and dynamic molecular simulations[J].Chem Soc Rev,2014,43(21):7326-7357.
[8] Goeppert A,Czaun M,Jone J P,et al.Recycling of carbon dioxide to methanol and derived products-closing the loop[J].Chem Soc Rev,2014,43(23):7995-8048.
[9] Haw J F,Song W,Marcus D W,et al.The mechanism of methanol to hydrocarbon catalysis[J].Acc Chem Res,2003,36(5):317-326.
[10] Hirota Y,Murata K,Miyamoto M,et al.Light olefins synthesis from methanol and dimethylether over SAPO-34 nanocrystals[J].Ctala Lett,2010,140(1/2):22-26.
[11] Li Z B,Martinez-Triguero J,Yu J H,et al.Conversion of methanol to olefins:Stabilization of nanosized SAPO-34 by hydrothermal treatment[J].J Catal,2015,329:379-388.
[12] Liang J,Li H,Zhao S,et al.Characteristics and performance of SAPO-34 catalyst for methanol-to-olefin conversion[J].Appl Catal,1990,64:31-40.
[13] Yuan Cuiyu,Wei Yingxu,Li Jinzhe,et al.Methanol conversion reaction and carbon deposition of fluidized bed catalyst SAPO-34 under temperature programmed conditions[J].Chin J Catal,2012,33(2):367-374.
[14] Xi D,Sun Q,Xu J,et al.In-situ growth-etching approach to the preparation of hierarchically macroporous zeolites with high mto catalytic activity and selectivity[J].J Mater Chem A,2014,2(42):17994-18004.
[15] Serrano D P P.Synthesis strategies in the search for hierarchical zeolites[J].Chem Soc Rev,2013,42(9):4004-4035.
[16] Liu Zhicheng,Wang Yangdong,Xie Zaiku.Recent progress in multi-stage pore construction of zeolite catalytic materials[J].Chemical Reaction Engineering and Technology,2013,29(5):385-391.
[17] Mei C,Wen P,Liu Z,et al.Selective production of propylene from methanol:Mesoporosity development in high silica HZSM-5[J].J Catal,2008,258(1):243-249.
[18] Van Donk S,Janssen A H,Bitter J H,et al.Generation,characterization,and impact of mesopores in zeolite[J].Catalysts Catal Rev,2003,45(2):297-319.
[19] Campelo J M,Lafont F,Marinas J M,et al.Studies of catalyst deactivation in ethanol conversion with high,medium and small pore silicoaluminophosphates[J].Appl Catal A:Gen,2000,192:85-96.
[20] Lee Y J,Baek S C,Jun K W.Methanol conversion on SAPO-34 catalysts prepared by mixed template method[J].Appl Catal A:Gen,2007,329(10):130-136.
[21] Gayubo A G,Aguayo A T,Campo A E S,et al.Kinetic modeling of methanol transformation into olefins on SAPO-34 catalyst[J].Ind Eng Chem Res,2000,39(2):292-230.
[1] 高赛男, 刘中海, 秦冬玲, 杨刚. SAPO-34分子筛的合成及催化果糖制5-羟甲基糠醛的应用[J]. 现代化工, 2018, 38(7): 136-140.
[2] 李浩阳, 万梦秋, 孙国锋, 刘生鹏. 载体改性制备SAPO-34分子筛膜及其H2/CO2分离性能的研究[J]. 现代化工, 2017, 37(9): 119-122.
[3] 叶帅, 宁英辉, 袁春亮. 甲醇制烯烃(MTO)反再两器汽提段汽提效果的分析[J]. 现代化工, 2017, 37(7): 171-174.
[4] 汲永钢. SAPO-34分子筛的合成方法及其辅助合成的研究进展[J]. 现代化工, 2017, 37(6): 58-63.
[5] 郭磊, 朱伟平, 李飞, 薛云鹏, 郭智慧. 纳米SAPO-34分子筛合成研究[J]. 现代化工, 2016, 36(9): 20-23.
[6] 蒋章, 沈本贤, 赵基钢, 孔令涛. SAPO-34分子筛催化氯甲烷制取低碳烯烃及再生性能考察[J]. 现代化工, 2016, 36(3): 133-136,138.
[7] 孔令涛, 沈本贤, 蒋章. 两步晶化法合成SAPO-34分子筛及其催化氯甲烷制低碳烯烃研究[J]. 现代化工, 2015, 35(7): 73-77.
[8] 王兴旺, 李世洪, 孙岩, 李国辉, 楚海强, 张丽莉. Mn改性SAPO-34分子筛及其MTO催化性能研究[J]. 现代化工, 2015, 35(5): 85-87.
[9] 熊丽萍, 邢苗, 李国峰, 雷振, 陆江银. 干混法改性Fe2O3/SAPO-34催化乙醇制备乙烯[J]. 现代化工, 2014, 34(1): 101-105.
[10] 邢爱华,岳国,朱伟平,林泉,李艺. 甲醇制烯烃典型技术最新研究进展(Ⅰ)——催化剂开发进展[J]. , 2010, 30(9): 0-0.
[11] 邢爱华,岳国,蒋立翔,林泉,薛云鹏,田树勋,朱伟平. SAPO-34制备方法研究进展[J]. , 2010, 30(6): 0-0.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn