Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2019, Vol. 39 Issue (2): 55-60    DOI: 10.16606/j.cnki.issn0253-4320.2019.02.013
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
合成气一步法制低碳烯烃研究新进展
赵国龙, 刘存, 邢学想, 王金山, 刘嵩, 张雄福
大连理工大学化工学院, 精细化工国家重点实验室, 辽宁 大连 116024
Latest progress in one-step conversion from syngas to light olefins
ZHAO Guo-long, LIU Cun, XING Xue-xiang, WANG Jin-shan, LIU Song, ZHANG Xiong-fu
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
下载:  PDF (1783KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 简述了近5年来合成气一步法制低碳烯烃的2种路线,分别为经由费托反应制低碳烯烃的FTO路线和经由氧化物-分子筛(OX-ZEO)过程制低碳烯烃的双功能催化路线。重点论述了上述2种路线催化剂的研究进展,并对合成气一步法制低碳烯烃的进一步研究进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵国龙
刘存
邢学想
王金山
刘嵩
张雄福
关键词:  合成气  低碳烯烃  费托反应  双功能催化    
Abstract: Two routes from syngas to light olefins through one-step method in the past five years are described briefly,including the FTO route that prepare olefins via Fischer-Tropsch reaction and the bifunctional catalysis route that converses syngas to olefins via oxide-zeolite (OX-ZEO) process.Latest progress on catalysts for these two routes is discussed mainly.In addition,the prospect of syngas to light olefins via one-step method is proposed.
Key words:  syngas    light olefins    Fischer-Tropsch reaction    bifunctional catalysis
收稿日期:  2018-06-28      修回日期:  2018-11-30          
ZTFLH:  TQ426.6  
  O643.36  
通讯作者:  张雄福(1963-),男,博士,教授,研究方向为分子筛及复合膜,通讯联系人,xfzhang@dlut.edu.cn。    E-mail:  xfzhang@dlut.edu.cn
作者简介:  赵国龙(1995-),男,硕士生
引用本文:    
赵国龙, 刘存, 邢学想, 王金山, 刘嵩, 张雄福. 合成气一步法制低碳烯烃研究新进展[J]. 现代化工, 2019, 39(2): 55-60.
ZHAO Guo-long, LIU Cun, XING Xue-xiang, WANG Jin-shan, LIU Song, ZHANG Xiong-fu. Latest progress in one-step conversion from syngas to light olefins. Modern Chemical Industry, 2019, 39(2): 55-60.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2019.02.013  或          http://www.xdhg.com.cn/CN/Y2019/V39/I2/55
[1] 徐恒泳,葛庆杰,李文钊.合成气中枢[J].石油化工,2011,40(7):689-699.
[2] 郭海军,张海荣,王璨,等.合成气一步法直接转化制备低碳烯烃催化剂研究进展[J].新能源进展,2017,5(5):358-364.
[3] 刘中民,齐越.甲醇制取低碳烯烃(DMTO)技术的研究开发及工业性试验[J].中国科学院院刊,2006,21(5):406-408.
[4] 陈景润.合成气直接制取低碳烯烃催化剂研究进展[J].广州化工,2017,45(15):6-8.
[5] 王迪.新型Fe基费托合成制低碳烯烃催化剂的精细调控与机理研究[D].广州:华东理工大学,2017.
[6] 段建国.合成气一步法制低碳烯烃Fe基催化剂的研究[D].包头:内蒙古科技大学,2017.
[7] López C,Corma A.Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J].Science,2012,4(6):751-752.
[8] 于飞,李正甲,安芸蕾,等.合成气催化转化直接制备低碳烯烃研究进展[J].燃料化学学报,2016,44(7):801-814.
[9] 马光远,徐艳飞,王捷,等.合成气直接法制取低碳烯烃铁基催化体系研究进展[J].化工进展,2018,37(3):992-999.
[10] Das S K,Mohanty P,Majhi S,et al.CO-hydrogenation over silica supported iron based catalysts:Influence of potassium loading[J].Applied Energy,2013,111(11):267-276.
[11] Cheng Y,Lin J,Wu T,et al.Mg and K dual-decorated Fe-on-reduced graphene oxide for selective catalyzing CO hydrogenation to light olefins with mitigated CO2 emission and enhanced activity[J].Applied Catalysis B:Environmental,2017,204:475-485.
[12] Zhang Z,Dai W,Xu X,et al.MnOx promotional effects on olefins synthesis directly from syngas over bimetallic Fe-MnOx/SiO2 catalysts[J].Aiche Journal,2017,63(10):4451-4464.
[13] Nasser A,Guo L,ELnaggar H,et al.Mn-Fe nanoparticles on a reduced graphene oxide catalyst for enhanced olefin production from syngas in a slurry reactor[J].RSC Advances,2018,8(27):14854-14863.
[14] Falkenhagen J P,Maisonneuve L,Paalanen P P,et al.Cobalt-iron-manganese catalysts for the conversion of end-of-life-tire-derived syngas into light terminal olefins[J].Chemistry,2018,24(18):4597-4604.
[15] Ni Z,Qin H,Kang S,et al.Effect of graphitic carbon modification on the catalytic performance of Fe@SiO2-GC catalysts for forming lower olefins via Fischer-Tropsch synthesis[J].Journal of Colloid and Interface Science,2018,516:16-22.
[16] Zhu C,Zhang M,Huang C,et al.Carbon-encapsulated highly dispersed FeMn nanoparticles for Fischer-Tropsch synthesis to light olefins[J].New Journal of Chemistry,2018,42(4):2413-2421.
[17] 石变芳,查斌斌,张俊,等.聚苯胺衍生碳材料负载的Fe基合成气直接制低碳烯烃催化剂:载体碳化温度的影响[J].化工学报,2018,69(2):699-708.
[18] Wei Y,Zhang C,Liu X,et al.Enhanced Fischer-Tropsch performances of graphene oxide-supported iron catalysts via argon pretreatment[J].Catalysis Science & Technology,2018,8(4):1113-1125.
[19] Yuan Y,Huang S,Wang H,et al.Monodisperse nano-Fe3O4 on α-Al2O3 catalysts for Fischer-Tropsch synthesis to lower olefins:Promoter and size effects[J].Chem Cat Chem,2017,9(16):3144-3152.
[20] Zhao X,Lv S,Wang L,et al.Comparison of preparation methods of iron-based catalysts for enhancing Fischer-Tropsch synthesis performance[J].Molecular Catalysis,2018,449:99-105.
[21] Zhong L,Yu F,An Y,et al.Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J].Nature,2016,538(7623):84-87.
[22] Ding Y.Co2C nanoprisms for syngas conversion to lower olefins with high selectivity[J].Chinese Journal of Catalysis,2017,38(1):1-4.
[23] Li Z,Lin T,Yu F,et al.The Mechanism of Mn pomoter via CoMn spinel for morphology control:Formation of Co2C nanoprisms for Fischer-Tropsch to olefins reaction[J].ACS Catalysis,2017,7(12):8023-8032.
[24] Jiao F,Li J,Pan X,et al.Selective conversion of syngas to light olefins[J].Science,2016,351(6277):1065-1068.
[25] Zhu Y,Pan X,Jiao F,et al.Role of manganese oxide in syngas conversion to light olefins[J].ACS Catalysis,2017,7(4):2800-2804.
[26] Jiao F,Pan X,Gong K,et al.Shape-selective zeolites promote ethylene formation from Syngas via a ketene intermediate[J].Angewandte Chemie,2018,57(17):4692-4696.
[27] Cheng K,Gu B,Liu X,et al.Direct and highly selective conversion of synthesis gas to lower olefins:Design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J].Angewandte Chemie,2016,128(15):4803-4806.
[28] Liu X,Zhou W,Yang Y,et al.Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J].Chemical Science,2018,9:4708-4718.
[29] Su J,Wang D,Wang Y,et al.Direct Conversion of syngas into light olefins over zirconium-doped indium(Ⅲ) oxide and SAPO-34 bifunctional catalysts:Design of oxide component and construction of reaction network[J].Chemcatchem,2018,10(7):1536-1541.
[30] Raveendra G,Li C,Yang Cheng,et al.Direct transformation of syngas to lower olefins synthesis over hybrid Zn-Al2O3/SAPO-34 catalysts[J].New Journal of Chemistry,2018,42(6):4419-4431.
[1] 李鹏翔, 刘小静, 廉红蕾. 二氧化碳加氢制烯烃催化剂的制备和性能[J]. 现代化工, 2019, 39(2): 41-45.
[2] 任健, 李大鹏, 王宁波, 王永娟, 姚晓虹, 王维, 杨帆, 党昱. 基于C1化学的低碳烯烃合成技术研究进展[J]. 现代化工, 2018, 38(8): 58-62.
[3] 段玉梅, 郑长征, 李亚斐, 丁羽佳, 张兴. Ni改性Cu-Fe基催化剂的制备及其在CO加氢制低碳醇中的性能研究[J]. 现代化工, 2018, 38(8): 139-142,144.
[4] 钟超泽, 陈前林, 敖先权, 曹阳. 不同Rh负载量对Rh-Cu-Co-K/LDHs催化合成气制乙醇性能的影响[J]. 现代化工, 2018, 38(8): 161-165.
[5] 吴红梅, 郭宇, 吕兴旺, 陈强强, 殷慧敏. 煤基含氮合成气一步法制二甲醚工艺的模拟与优化[J]. 现代化工, 2018, 38(5): 205-209,211.
[6] 叶帅, 宁英辉, 袁春亮. 甲醇制烯烃(MTO)反再两器汽提段汽提效果的分析[J]. 现代化工, 2017, 37(7): 171-174.
[7] 李代红, 王洪波. 合成气制乙二醇市场及技术进展[J]. 现代化工, 2017, 37(1): 5-8,10.
[8] 夏航, 杨霞珍, 霍超, 刘化章. 合成气一步制取低碳烯烃铁基催化剂的研究进展[J]. 现代化工, 2016, 36(8): 19-23.
[9] 蒋章, 沈本贤, 赵基钢, 孔令涛. SAPO-34分子筛催化氯甲烷制取低碳烯烃及再生性能考察[J]. 现代化工, 2016, 36(3): 133-136,138.
[10] 李崇杰, 宋海岩, 张晗, 温晓雨, 张雪, 昝杰, 杜蕾, 董天贺. 基于Aspen Plus的合成气制乙二醇流程模拟及设计创新[J]. 现代化工, 2016, 36(11): 179-182.
[11] 王小波, 冯宜鹏, 刘安琪, 赵增立, 李海滨, 陈勇. 城市生活垃圾气化粗燃气与甲烷气流床高温重整制合成气模拟计算[J]. 现代化工, 2016, 36(1): 171-175.
[12] 屈江文, 张国杰, 苏爱廷. CH4-CO2催化重整制合成气Co-MgO/活性炭催化剂的制备及性能[J]. 现代化工, 2015, 35(8): 124-128.
[13] 段明哲, 许明杰. 浆态床反应器在国内合成气转化领域的研究进展[J]. 现代化工, 2015, 35(8): 28-30,32.
[14] 孔令涛, 沈本贤, 蒋章. 两步晶化法合成SAPO-34分子筛及其催化氯甲烷制低碳烯烃研究[J]. 现代化工, 2015, 35(7): 73-77.
[15] 苗强, 王理. 新型甲烷化反应器及其系统的研究[J]. 现代化工, 2015, 35(7): 108-111.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn