Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2019, Vol. 39 Issue (2): 41-45    DOI: 10.16606/j.cnki.issn0253-4320.2019.02.010
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
二氧化碳加氢制烯烃催化剂的制备和性能
李鹏翔, 刘小静, 廉红蕾
郑州大学化工与能源学院, 河南 郑州 450001
Preparation and properties of catalysts for carbon dioxide hydrogenation to light olefins
LI Peng-xiang, LIU Xiao-jing, LIAN Hong-lei
School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China
下载:  PDF (1500KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 对CO2加氢制烯烃催化剂的制备方法、反应机理以及不同的助剂和载体对于催化剂结构的影响进行了综述。阐述了当前CO2加氢制烯烃催化剂研究中存在的问题和难点。提出了结合相关原位光谱表征技术手段、构建催化剂结构和性能高效可控的构-效关系是今后研究的方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李鹏翔
刘小静
廉红蕾
关键词:  CO2加氢  低碳烯烃  反应机理  构-效关系    
Abstract: The preparation methods and reaction mechanism of catalysts for carbon dioxide hydrogenation are reviewed,and the influence of various auxiliaries and supports on the structure of catalysts is investigated.The problems and difficulties in the study of catalysts for carbon dioxide hydrogenation to olefin are discussed.It is proposed that the elaborating of the relationship between structure and performance of catalyst under working conditions by using operando techniques is the direction of future research.
Key words:  carbon dioxide hydrogenation    light olefins    reaction mechanism    relationship between structure and effect
收稿日期:  2018-06-19      修回日期:  2018-12-02          
ZTFLH:  O643.3  
基金资助: 河南省科技厅科技攻关项目(172102210129);河南省教育厅科学技术研究重点项目(14A530003)
通讯作者:  廉红蕾(1977-),女,博士,讲师,研究方向为多相催化材料合成及原位光谱表征技术,通讯联系人,hongleilian@zzu.edu.cn。    E-mail:  hongleilian@zzu.edu.cn
作者简介:  李鹏翔(1994-),男,硕士生
引用本文:    
李鹏翔, 刘小静, 廉红蕾. 二氧化碳加氢制烯烃催化剂的制备和性能[J]. 现代化工, 2019, 39(2): 41-45.
LI Peng-xiang, LIU Xiao-jing, LIAN Hong-lei. Preparation and properties of catalysts for carbon dioxide hydrogenation to light olefins. Modern Chemical Industry, 2019, 39(2): 41-45.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2019.02.010  或          http://www.xdhg.com.cn/CN/Y2019/V39/I2/41
[1] Olah G A,Goeppert A,Prakash G S.Chemical recycling of carbon dioxide to methanol and dimethyl ether:From greenhouse gas to renewable,environmentally carbon neutral fuels and synthetic hydrocarbons[J].Journal of Organic Chemistry,2008,74(2):487-498.
[2] Jiang Z,Xiao T,Kuznetsov V.Turning carbon dioxide into fuel[J].Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,2010,368(1923):3343-3364.
[3] 柏明星,贺凯,段永伟,等.CO2在能源开发中的应用进展[J].现代化工,2018,38(1):26-29,31.
[4] Wang W,Wang S P,Ma X B,et al.Recent advances in catalytic hydrogenation of carbon dioxide[J].Chemical Society Reviews,2011,40:3703-3727.
[5] Cao F H,Liu D H,Hou Q S,et al.Thermodynamic analysis of CO2 direct hydrogenation reactions[J].Journal of Natural Gas Chemistry,2001,10(1):24-33.
[6] 刘业奎,王黎,侯栋,等.二氧化碳加氢合成低碳烯烃反应平衡体系热力学研究[J].催化学报,2004,25(3):210-218.
[7] 刘业奎,侯栋,王黎,等.二氧化碳加氢合成低碳烯烃的研究进展[J].石油与天然气化工,2003,32(6):343-348.
[8] Visconti C G,Martinelli M,Falbo L,et al.CO2 hydrogenation to hydrocarbons over Co and Fe-based Fischer-Tropsch catalysts[J].Catalysis Today,2016,277:161-170.
[9] Wang J,You Z,Zhang Q,et al.Synthesis of lower olefins by hydrogenation of carbon dioxide over supported iron catalysts[J].Catalysis Today,2013,215:186-193.
[10] Yang C,Zhao H,Hou Y,et al.Fe5C2 nanoparticles:A facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis[J].Journal of American Chemical Society,2012,134:15814-15821.
[11] Satthawong R,Koizumi N,Song C,et al.Bimetallic Fe-Co catalysts for CO2 hydrogenation to higher hydrocarbons[J].Journal of CO2 Utilization,2013,3/4:102-106.
[12] Herranz T,Rojas S,Perez-Alonso F J,et al.Carbon oxide hydrogenation over silica-supported iron-based catalysts[J].Applied Catalysis A:General,2006,308:19-30.
[13] Gogate R J.Comparative study of CO and CO2 hydrogenation over supported Rh-Fe catalysts[J].Catalysis Communications,2010,11:901-906.
[14] Hu S,Liu M,Ding F,et al.Hydrothermally stable MOFs for CO2 hydrogenation over iron-based catalyst to light olefins[J].Journal of CO2 Utilization,2016,15:89-95.
[15] Satthawong R,Koizumi N,Song C,et al.Light olefin synthesis from CO2 hydrogenation over K-promoted Fe-Co bimetallic catalysts[J].Catalysis Today,2015,251:34-40.
[16] 刘蓉,王鹏飞,查飞,等.稀土改性SAPO-34分子筛的制备及其在CO2加氢合成低碳烯烃中的催化性能[J].精细化工,2016,33(4):413-418.
[17] Li Z L,Wang J J,Li C.Highly selective conversion of carbon dioxide to Lower olefins[J].ACS Catalysis,2017,7:8544-8548.
[18] Liu X L,Wang M H,Wang Y.Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34[J].Chemical Communications,2018,54:140-143.
[19] Zhang J L,Lu S P,Zhao T S.Selective formation of light olefins from CO2 hydrogenation over Fe-Zn-K catalysts[J].Journal of CO2 Utilization,2015,1912:95-100.
[20] Li Z J,Zhong L S.Effects of sodium on the catalytic performance of CoMn catalysts for Fischer-Tropsch to olefin reactions[J].ACS Catalysis,2017,7:3622-3631.
[21] Dorner R W,Hardy D R,Williams F W,et al.C2-C5+olefin production from CO2 hydrogenation using ceria modified Fe/Mn/K catalysts[J].Catalysis Communications,2011,15:88-92.
[22] 王迪.新型Fe基费托合成制低碳烯烃催化剂的精细调控与机理研究[D].上海:华东理工大学,2017.
[23] Fischer F,Tropsch H.The synthesis of petroleum at atmospheric pressures from gasification products of coal[J].Brennstoff-Chemie,1926,7:97-104.
[24] Pichler H,Schultz H.New insights in the area of the synthesis of hydrocarbons from CO and H2[J].Chemie Ingenieur Technik,1970,12(18):1160-1174.
[25] Stroch H,Golumbic N,Anderson R.The Fischer-Tropsch and Related synthesis[M].New Jersy:John Wiley&Sons,1951.
[26] Zhang Y,Fu D,Han Y F.Application of operando spectroscopy on catalytic reactions[J].Current Opinion in Chemical Engineering,2016,12:1-7.
[27] Chan H Y,Nguyen V H,Wu J C S,et al.Real-time Raman monitoring during photocatalytic epoxidation of cyclohexene over V-Ti/MCM-41 catalysts[J].Catalysts,2015,5:518-533.
[28] Jin S,Feng Z,Fan F,et al.UV Raman spectroscopic characterization of catalysts and catalytic active sites[J].Catalysis Letters,2015,145:468-481.
[29] Lin L,Tian X,Hong S,et al.A bioorthogonal Raman reporter strategy for SERS detection of glycans on live cells[J].Angewandte Chemie,2013,125:7407-7412.
[30] Fu D,Dai W,Xu X,et al.Probing the structure evolution of iron-based Fischer-Tropsch to produce olefins by operando Raman spectroscopy[J].Chem Cat Chem,2015,7:752-756.
[1] 任健, 李大鹏, 王宁波, 王永娟, 姚晓虹, 王维, 杨帆, 党昱. 基于C1化学的低碳烯烃合成技术研究进展[J]. 现代化工, 2018, 38(8): 58-62.
[2] 叶俊辉, 张晓岚, 袁静, 蔡婷, 何丹农. 非贵金属催化剂用于BTX催化燃烧的研究进展[J]. 现代化工, 2018, 38(3): 18-22.
[3] 赵小鸽, 刘梦梦, 王建成, 胡江亮, 韩丽娜. Cu-SSZ-13分子筛NH3-SCR脱硝技术研究[J]. 现代化工, 2017, 37(9): 34-39.
[4] 叶帅, 宁英辉, 袁春亮. 甲醇制烯烃(MTO)反再两器汽提段汽提效果的分析[J]. 现代化工, 2017, 37(7): 171-174.
[5] 黄鹏, 张文超, 姚靖靖, 赵梦婷, 霍超. 生物质催化裂解选择性制备化学品的研究进展[J]. 现代化工, 2017, 37(6): 53-57,59.
[6] 夏航, 杨霞珍, 霍超, 刘化章. 合成气一步制取低碳烯烃铁基催化剂的研究进展[J]. 现代化工, 2016, 36(8): 19-23.
[7] 蒋章, 沈本贤, 赵基钢, 孔令涛. SAPO-34分子筛催化氯甲烷制取低碳烯烃及再生性能考察[J]. 现代化工, 2016, 36(3): 133-136,138.
[8] 孔令涛, 沈本贤, 蒋章. 两步晶化法合成SAPO-34分子筛及其催化氯甲烷制低碳烯烃研究[J]. 现代化工, 2015, 35(7): 73-77.
[9] 邢爱华. 固定流化床评价MTO工业试应用催化剂性能[J]. 现代化工, 2015, 35(3): 131-134.
[10] 向航, 李静, 曹建新, 杨林. CO2绿色化合成低碳烯烃Fe基催化剂研究进展[J]. 现代化工, 2015, 35(2): 27-31,33.
[11] 吴永涛,杨光福,王刚,徐春明,申宝剑,高金森. 反应温度对汽油催化裂解多产低碳烯烃的影响[J]. , 2009, 29(1): 0-0.
[12] 王成国,赵亚奇,王启芬. 连续水相沉淀聚合法合成聚丙烯腈的反应机理研究进展[J]. , 2008, 28(1): 0-0.
[13] 隋铭皓,马军,盛力. 水处理多相催化臭氧氧化技术研究现状[J]. , 2007, 27(3): 0-0.
[14] 席先锋 周晓红 吴周安 雷志刚 顾永红. 全氟碘代烷调聚反应的机理与工艺研究进展[J]. , 2005, 25(6): 0-0.
[15] 齐国祯 谢在库 钟思青 张成芳 陈庆龄. 煤或天然气经甲醇制低碳烯烃工艺研究新进展[J]. , 2005, 25(2): 0-0.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn