Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2019, Vol. 39 Issue (1): 18-22,24    DOI: 10.16606/j.cnki.issn0253-4320.2019.01.004
  专论与评述 本期目录 | 过刊浏览 | 高级检索 |
超临界水氧化处理工业废水的技术问题及解决思路
张光伟1,2, 董振海2
1. 沈阳化工大学, 辽宁 沈阳 110142;
2. 沈阳化工研究院有限公司, 辽宁 沈阳 110021
Technical problems and solutions for industrial wastewater treatment via oxidation by supercritical water
ZHANG Guang-wei1,2, DONG Zhen-hai2
1. Shenyang University of Chemical Technology, Shenyang 110142, China;
2. Shenyang Research Institute of Chemical Industry Co., Ltd., Shenyang 110021, China
下载:  PDF (1648KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 超临界水氧化(SCWO)在过去的30年中作为取代焚烧处理高浓度工业有机废水的技术开发取得了巨大的进展。SCWO作为新型废物处理技术存在一些缺陷,如反应器腐蚀与盐堵塞阻碍了其工业进程中的应用。详细描述了超临界水氧化技术存在的几类相关问题,其中,重点对该技术工业化的应用难点进行了阐释并提出了相应的解决方案,最后对超临界水氧化技术领域的未来研究方向提出了展望与建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张光伟
董振海
关键词:  超临界水  氧化  废水处理  反应器  腐蚀  盐堵塞    
Abstract: In the past thirty years,supercritical water oxidation (SCWO) has made great progress as a substitute for incineration in the treatment of highly concentrated industrial organic wastewater.As a new treatment technology,SCWO has however some defects such as corrosion and salt plugging problems to reactors,which hinder its application in the industrial waste treatment process.The existing problems of SCWO are described in details and the key points for industrial application of SCWO are explained and unscrambled.The future research direction of SCWO is proposed.In addition,the thermal energy utilization of SCWO is also described and the results show that SCWO has some great advantages than normal waste treatment technology.
Key words:  supercritical water    oxidation    wastewater treatment    reactor    corrosion    salt plug
收稿日期:  2018-06-11      修回日期:  2018-11-20          
X786  
  X787  
基金资助: 辽宁省自然科学基金计划重点项目(20170540729)
通讯作者:  张光伟(1988-),男,博士研究生,讲师,研究方向为水热氧化技术,通讯联系人,024-89383736,418969313@qq.com    E-mail:  418969313@qq.com
引用本文:    
张光伟, 董振海. 超临界水氧化处理工业废水的技术问题及解决思路[J]. 现代化工, 2019, 39(1): 18-22,24.
ZHANG Guang-wei, DONG Zhen-hai. Technical problems and solutions for industrial wastewater treatment via oxidation by supercritical water. Modern Chemical Industry, 2019, 39(1): 18-22,24.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2019.01.004  或          http://www.xdhg.com.cn/CN/Y2019/V39/I1/18
[1] Savage P E,Gopanlan S,Mizan T I,et al.Reactions at supercritical conditions:Applications and fundamentals[J].AIChE J,1995,41(7):1723-1778.
[2] Broll D,Kaul C,Kramer A,et al.Chemistry in supercritical water[J].Angew Chem Int Ed,1999,38(20):2999-3014.
[3] Harradine D M,Buelow J,Dell'Orco P C,et al.Oxidation chemistry of energetic materials in supercritical water[J].Hazardous Waste and Hazardous Mater,1993,10(2):233-246.
[4] Mishra V,Mahajani V V,Joshi J B.Wet air oxidation[J].Ind Eng Chem Res,1995,34(1):2-48.
[5] Franck E U.Physicochemical properties of supercritical solvents[J].Zeitschrift Für Elektrochemie Berichte Der Bunsengesellschaft Für Physikalische Chemie,2010,88(9):820-825.
[6] Japas M L,Franck E U.High pressure phase equlibria and PVT-data of the water-oxygen system including water-air to 673 K and 250 MPa[J].Zeitschrift Für Elektrochemie Berichte Der Bunsengesellschaft Für Physikalische Chemie,2010,89(12):1268-1275.
[7] Ikushima Y,Sato M,Hatakeda K,et al.Chemical reaction of organics in supercritical water[J].Cheminform,2007,38(27):213-222.
[8] 佐古猛,岡島いづみ.超臨界流体のはなし[M].日刊工業新聞社,2006:13-16.
[9] Marrone P A.Supercritical water oxidation——Current status of full-scale commercial activity for waste destruction[J].J Supercrit Fluids,2013,79(7):283-288.
[10] 丁军委,陈丰秋,吴素芳,等.苯胺在超临界水中氧化反应路径[J].化工学报,2000,51(5):690-694.
[11] 侯彩霞,马沛生.超临界水及其氧化反应的研究及应用[J].化学工业与工程,2003,20(6):361-366.
[12] 王亮,王树众,张钦明,等.超临界水氧化处理含油废水的实验研究[J].环境污染与防治,2005,27(7):546-549.
[13] 张洁,王树众,郭洋,等.超临界水氧化处理偶氮染料废水的实验研究[J].化学工程,2011,39(10):11-15.
[14] 林春绵,袁细宁,杨馗.超临界水氧化法降解甲胺磷的研究[J].环境科学学报,2000,20(6):714-718.
[15] 张召恩,韩恩厚,张丽,等.超临界水氧化(SCWO)在环境保护中的应用[J].环境技术,2002,4:21-26.
[16] 张丽,王俭秋,关辉,等.超临界水氧化技术及其环境中材料的腐蚀研究现状[J].腐蚀科学与防护技术,2001,13(5):270-274.
[17] 新奥超临界技术治污治本[N·OL].中国环境报[2015-8-13].http:news.cenews.com.cn·html·2015-08·13·content_32562.htm.
[18] Eliaz N,Mitton D B,Latanision R M.Review of materials issues in supercritical water oxidation systems and the need for corrosion control[J].Trans Indian Inst Metals,2003,56(3):305-314.
[19] Asselin E,Alfantazi A,Rogak S.Corrosion of nickel-chromium alloys,stainless steel and niobium at supercritical water oxidation conditions[J].Corros Sci,2010,52(1):118-124.
[20] Boukis N,Friedrich C,Dinjus E.Titanium as reactor material for SCWO applications-first experimental results[R].San Diego:CORROSION'98,1998.
[21] Kriksunov L B,Macdonald D D.Corrosion in supercritical water oxidation systems:A phenomenological analysis[J].J.Electrochem Soc,1995,142(12):4069-4073.
[22] Kritzer P,Boukis N,Dinjus E.Transpassive dissolution of alloy 625,chromium,nickel,and molybdenum in high-temperature solutions containing hydrochloric acid and oxygen[J].Corrosion,2000,56(3):265-272.
[23] Tang X,Wang S,Qian L,et al.Corrosion behavior of nickel base alloys,stainless steel and titanium alloy in supercritical water containing chloride phosphate and oxygen[J].Chem Eng Res Des,2015,100:530-541.
[24] Son S,Lee J,Byeon S,et al.Surface chemical analysis of corroded alloys in subcritical and supercritical water oxidation of 2-chlorophenol in continuous anticorrosive reactor system[J].Ind Eng Chem Res,2008,47(7):2265-2272.
[25] Armellini F J,Tester J W.Experimental methods for studying salt nucleation and growth from supercritical water[J].J Supercrit Fluids,1991,4(4):254-264.
[26] Oelkers E H,Helgeson H C.Multiple ion association in supercritical aqueous solutions of single electrolytes[J].Science,1993,261(5123):888-891.
[27] Barner H E,Huang C Y,Johnson T,et al.Supercritical water oxidation:An emerging technology[J].J Hazardous Mater,1992,31(1):1-17.
[28] Laroche H L,Weber M,Trepp C.Design rules for the wallcooled hydrothermal burner (WHB)[J].Process Technology Proceedings,1996,12:645-650.
[29] John S,James O.Supercritical water oxidation apparatus and method:US7972573[P].2011-07-05.
[30] Schmieder H,Abeln J.Supercritical water oxidation:State of the art[J].Chem Eng Technol,1999,22(11):903-908.
[31] Marronea P,Hodesb M,Smith K,et al.Salt precipitation and scale control in supercritical water oxidation-part B:Commercial·full-scale applications[J].J Supercrit Fluids,2004,29(3):289-312.
[32] Casal V,Schmidt H.SUWOX-a facility for the destruction of chlorinated hydrocarbons[J].J Supercrit Fluids,1998,13:269-276.
[33] Garcia-Rodriguez Y,Mato F,Martin A,et al.Energy recovery from effluents of supercritical water oxidation reactors[J].J Supercriti Fluids,2015,104:1-9.
[34] Mukohara T,Koshizuka T,Oka S.Core design of a high temperature fast reactor cooled by supercritical light water[J].Ann Nucl Energy,1999,26(16):1423-1436.
[35] Guo R,Yamaji A,Oka Y.Analysis of accidents and abnormal transients of a high breeding fast reactor cooled by supercritical-pressure light water[J].Nucl Eng Des,2015,295(15):228-238.
[1] 宋晓玲, 李国华, 黄迪, 朱萌萌, 张雪明. 超临界CO2制备h-BN纳米片及其负载钴催化性能研究[J]. 现代化工, 2018, 38(9): 164-167.
[2] 冯耀华, 李春雷, 艾灵. 锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2的产业化工艺研究[J]. 现代化工, 2018, 38(9): 174-179.
[3] 张鑫, 王永波, 王林昕, 刘恩周, 胡晓云, 樊君. 氧化石墨烯载药体系负载甲硝唑及体外释放的研究[J]. 现代化工, 2018, 38(9): 127-131.
[4] 刘婷婷, 乔建江. 复合氢氧化铝-季戊四醇的制备及其应用研究[J]. 现代化工, 2018, 38(9): 155-159.
[5] 张帅, 叶芳芳, 谢文玉, 温福. 稠油加工污水中氮污染来源及处理技术研究进展[J]. 现代化工, 2018, 38(9): 40-44.
[6] 黄振, 邓征兵, 陈德珍, 何方, 李海滨. 基于NiFe2O4载氧体的化学链蒸汽重整制氢实验研究[J]. 现代化工, 2018, 38(9): 90-95.
[7] 王晨璐, 龚本涛, 沈峥, 付阳, 张亚雷. 铁炭微电解法去除青霉素类抗生素的研究[J]. 现代化工, 2018, 38(9): 100-104.
[8] 纪钦洪, 于广欣, 于航, 熊亮, 孙玉平, 刘强. 包埋菌膨胀床脱氮工艺处理煤气化废水[J]. 现代化工, 2018, 38(8): 176-179.
[9] 刘杰, 孙美婷, 李玲. 一种液化分离二氧化碳净化工艺[J]. 现代化工, 2018, 38(8): 206-208.
[10] 刘经伟, 傅玉川, 沈俭一. 载体TiO2晶型对甲醇选择氧化性能的影响[J]. 现代化工, 2018, 38(8): 112-116.
[11] 贺凯, 柏明星, 胡晓宇, 高硕. CO2抽取干热岩地热强化采油技术[J]. 现代化工, 2018, 38(7): 6-9.
[12] 黄镇, 夏玥穜, 温朗友, 郜亮, 宗保宁, 罗一斌. N-羟基邻苯二甲酰亚胺非均相催化剂的研究进展[J]. 现代化工, 2018, 38(7): 16-20.
[13] 赵文莉, 王广智, 弋凡, 朱天琳. 过硫酸盐活化技术的研究进展[J]. 现代化工, 2018, 38(7): 53-56.
[14] 郭斌, 王红红, 边永欢, 张轩. 蓄热式氧化器处理挥发性有机物的数值模拟技术及应用进展[J]. 现代化工, 2018, 38(7): 44-47,49.
[15] 代岩, 王硕, 田黎明, 肖武. FePc-TiO2/CS复合材料制备及光催化降解染料废水[J]. 现代化工, 2018, 38(7): 89-92.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn