Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (9): 168-173    DOI: 10.16606/j.cnki.issn0253-4320.2018.09.038
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
一步水热法制备ATP/CuFe2O4纳米复合材料及其催化还原对硝基苯酚
李强1, 钱俊峰2, 查杰2, 左士祥2, 姚超2
1. 中石化泰州石油化工有限责任公司, 江苏 泰州 225300;
2. 常州大学石油化工学院, 江苏 常州 213164
Preparation of ATP/CuFe2O4 nanocomposites via one-pot hydrothermal and their catalytic performance in reduction of nitrophenol
LI Qiang1, QIAN Jun-feng2, ZHA Jie2, ZUO Shi-xiang2, YAO Chao2
1. Sinopec Taizhou Petrochemical Company Limited, Taizhou 225300, China;
2. School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
下载:  PDF (4686KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以氯化铜、三氯化铁、乙二醇为主要原料,采用一步水热法制备凹凸棒石/铁酸铜(ATP/CuFe2O4)纳米复合材料。通过TEM、EDS、XRD、FT-IR和BET等对ATP/CuFe2O4复合材料进行分析;将ATP/CuFe2O4纳米复合材料应用于硼氢化钠催化还原对硝基苯酚生成对氨基苯酚的反应,考察了不同催化剂、CuFe2O4包覆量、催化剂用量等因素对硼氢化钠还原对硝基苯酚的影响。结果表明,50% CuFe2O4包覆量的ATP/CuFe2O4材料具有较高的催化活性,当ATP/CuFe2O4质量为5 mg时,还原可在7 min内完成。通过对ATP/CuFe2O4纳米复合材料的重复使用和磁分离回收,表明ATP/CuFe2O4具有良好的磁分离性和循环稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李强
钱俊峰
查杰
左士祥
姚超
关键词:  凹凸棒石  铁酸铜  催化还原  对硝基苯酚    
Abstract: Attapulgite/copper ferrite (ATP/CuFe2O4) magnetic nanocomposites are prepared through one-pot hydrothermal method using copper chloride, ferric trichloride and ethylene glycol as raw materials.The structure and surface characteristics of the prepared materials are investigated by TEM, EDS, FTIR, XRD and BET.ATP/CuFe2O4 magnetic nanocomposites are used as catalyst for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride at room temperature.Influences of various catalysts, CuFe2O4 coating amount and catalyst dosage on the reduction of 4-NP by NaBH4 are studied.The experiment results show that ATP/CuFe2O4 material with a 50% of CuFe2O4 coating amount exhibits a higher catalytic activity and can make the reaction complete within 7 minutes when its dosage is 5 mg.The repeating and recovering experiments show that this catalyst has good magnetic separation and recycle stability.
Key words:  Attapulgite    CuFe2O4    catalytic reduction    4-nitrophenol
收稿日期:  2018-01-08      修回日期:  2018-07-10           出版日期:  2018-09-20
TQ032.4  
通讯作者:  姚超(1969-),男,博士,教授,博士生导师,研究方向为新型化工吸附和催化材料的开发与应用,通讯联系人,yaochao@cczu.edu.cn    E-mail:  yaochao@cczu.edu.cn
作者简介:  李强(1981-),男,硕士,工程师,主要从事化学工程及分离相关研究和生产,liq.yzsh@sinopec.com。
引用本文:    
李强, 钱俊峰, 查杰, 左士祥, 姚超. 一步水热法制备ATP/CuFe2O4纳米复合材料及其催化还原对硝基苯酚[J]. 现代化工, 2018, 38(9): 168-173.
LI Qiang, QIAN Jun-feng, ZHA Jie, ZUO Shi-xiang, YAO Chao. Preparation of ATP/CuFe2O4 nanocomposites via one-pot hydrothermal and their catalytic performance in reduction of nitrophenol. Modern Chemical Industry, 2018, 38(9): 168-173.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.09.038  或          http://www.xdhg.com.cn/CN/Y2018/V38/I9/168
[1] Feng J,Su L,Ma Y,et al.CuFe2O4 magnetic nanoparticles:A simple and efficient catalyst for the reduction of nitrophenol[J].Chemical Engineering Journal,2013,221:16-24.
[2] Li Y Z,Cao Y L,Xie J,et al.Facile solid-state synthesis of Ag/graphene oxide nanocomposites as highly active and stable catalyst for the reduction of 4-nitrophenol[J].Catalysis Communications,2015,58:21-25.
[3] Abbar A,Sulaymon A,Jalhoom M,et al.Scale-up of a fixed bed electrochemical reactor consisting of parallel screen electrode used for paminophenol production[J].Electrochim Acta,2007,53:1671-1679.
[4] Du Y,Chen H L,Chen R Z,et al.Synthesis of p-aminophenol from pnitrophenol over nano-sized nickel catalysts[J].Applied Catalysis A-General,2004,277:259-264.
[5] Polat K,Aksu M L,Pekel A T,et al.Electroreduction of nitrobenzene to p-aminophenol using voltammetric and semipilot scale preparative electrolysis techniques[J].Journal of Applied Electrochemistry,2002,32:217-223.
[6] Astruc D,Lu F,Aranzaes J R,et al.Nanoparticles as recyclable catalysts:The frontier between homogeneous and heterogeneous catalysis[J].Angewandte Chemie International Edition,2005,44:7852-7872.
[7] Shin H C,Choi S C,Jung K D,et al.Mechanism of M ferrites (M=Cu and Ni) in the CO2 decomposition reaction[J].Chemistry Materials,2001,13:1238-1242.
[8] Panda N,Jena A K,Mohapatra S,et al.Ligand-free Fe-Cu cocatalyzed cross-coupling of terminal alkynes with aryl halides[J].Chemistry Letters,2011,40:956-958.
[9] Panda N,Jena A K,Mohapatra S,et al,Heterogeneous magnetic catalyst for Sarylation reactions[J].Applied Catalysis A-General,2012,433-434:258-264.
[10] Deng H,Chen H Y,Li H,et al.Synthesis of crystal MFe2O4 (M=Mg,Cu,Ni) microspheres[J].Materials Chemistry and Physics,2007,101:509-513.
[11] Nemanashi M,Meijboom R.Synthesis and characterization of Cu,Ag and Au dendrimer-encapsulated nanoparticles and their application in the reduction of 4-nitrophenol to 4-aminophenol[J].Journal of Colloid and Interface Science,2013,389:260-267.
[12] Dong Z P,Le X D,Dong C X,et al.Ni@Pd core-shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol[J].Applied Catalysis B:Environmental,2015,162:372-380.
[13] 毕慧平,刘立忠,丁佳佳,等.Cu-石墨烯类Fenton催化剂的制备及催化活性[J].无机化学学报,2014,30(10):2347-2352.
[14] Li S,Wei Y,Kong Y,et al.Electrochemical removal of lead ions using paper electrode of polyaniline/attapulgite composites[J].Synthetic Metals,2015,9:45-50.
[15] Huang X Q,Li Y J,Zhou H L,et al.Simplifying the creation of dumbbell-like Cu-Ag nanostructures and their enhanced catalytic activity[J].Chemistry-A European Journal,2012,18(31):9505-9510.
[16] Yang C,Wu J J,Hou Y L,et al.Fe3O4 Nanostructures:Synthesis,growth mechanism,properties and applications[J].Chemical Communications,2011,47(18):5130-5141.
[17] Zhang Y W,Liu S,Lu W B,et al.In situ green synthesis of Au nanostructures on graphene oxide and their application for catalytic reduction of 4-nitrophenol[J].Catalysis Science and Technology,2011,1(7):1142-1144.
[18] Gu H,Wang J N,Ji Y C,et al.Facile and controllable fabrication of gold nanoparticles-immobilized hollow silica particles and their high catalytic activity[J].Journal of Materials Chemistry A:Materials,2013,1(40):12471-12477.
[19] Prucek R,Kvítek L,Panácek A,et al.Polyacrylate-assisted synthesis of stable copper nanoparticles and copper(Ⅰ) oxide nanocubes with high catalytic efficiency[J].Journal of Materials Chemistry,2009,19(44):8463-8469.
[1] 宋晓玲, 李国华, 黄迪, 朱萌萌, 张雪明. 超临界CO2制备h-BN纳米片及其负载钴催化性能研究[J]. 现代化工, 2018, 38(9): 164-167.
[2] 张耀日, 霍志萍, 张丽娟, 冯晴, 臧甲忠, 于海斌. SSZ-13分子筛合成及应用进展[J]. 现代化工, 2018, 38(9): 54-59.
[3] 任爱玲, 刘卉, 张硕, 赵文霞. Ce-Mn/ZSM-5催化剂的制备及其低温脱硝性能分析[J]. 现代化工, 2018, 38(6): 73-77.
[4] 张元春, 高圣涛. 氨法选择性催化还原工艺在硝酸尾气治理中的应用[J]. 现代化工, 2018, 38(1): 177-179.
[5] 赵小鸽, 刘梦梦, 王建成, 胡江亮, 韩丽娜. Cu-SSZ-13分子筛NH3-SCR脱硝技术研究[J]. 现代化工, 2017, 37(9): 34-39.
[6] 周惠, 黄华存, 董文华, 崔晶. V2O5-WO3/TiO2脱硝催化剂的制备及抗硫性能[J]. 现代化工, 2017, 37(9): 114-118.
[7] 陈玉龙, 赵宇鸿, 戴子剑, 吴涛, 金海波, 杨基和. 不锈钢酸洗混酸再生烟气SCR脱硝工艺设计[J]. 现代化工, 2017, 37(8): 166-169.
[8] 刘唯奇, 张国甫, 高海见, 陈金锋. 丙烷脱氢装置烟气脱硝技术与设备改造[J]. 现代化工, 2016, 36(7): 166-169.
[9] 钟东文, 钱俊峰, 肖树萌. 改性凹凸棒石黏土对乙二醇装置副产二乙二醇脱色研究[J]. 现代化工, 2016, 36(4): 93-96.
[10] 张冉冉, 李永红. Cu基分子筛NH3-SCR脱硝催化剂的研究进展[J]. 现代化工, 2015, 35(8): 67-71.
[11] 陈焕章, 李宏, 王丹, 李花. 选择性催化还原脱硝催化剂的研究进展[J]. 现代化工, 2015, 35(6): 18-21,23.
[12] 王福伟,王倩,刘晓明,阿布都拉江·那斯尔,宋名秀,朱维群. 脱硝供氨系统中尿素制氨技术探讨[J]. , 2011, 31(3): 0-0.
[13] 王毅,冯辉霞,裴先武,张文娟,张义新,邱建辉. 二苯基甲烷二异氰酸酯改性凹凸棒石的合成与表征[J]. , 2010, 30(8): 0-0.
[14] 固旭,蒋金龙,刘晓勤. 凹凸棒石黏土催化剂的研究进展[J]. , 2010, 30(5): 0-0.
[15] 温青,孙茜,赵立新,吴英. 微生物燃料电池对废水中对硝基苯酚的去除[J]. , 2009, 29(4): 0-0.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn