Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (8): 172-175    DOI: 10.16606/j.cnki.issn0253-4320.2018.08.037
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
常压干燥工艺制备SiO2纳米纤维-SiO2复合气凝胶及其表征
李可1,2,3, 陈林2,3, 牛胜杰1,2,3, 郑康2,3, 张献2,3, 田兴友2,3
1. 中国科学院合肥物质科学研究院应用技术研究所, 安徽 合肥 230088;
2. 中国科学技术大学, 安徽 合肥 230026;
3. 中国科学院光伏与节能材料重点实验室, 安徽 合肥 230088
Preparation of SiO2 nanofibers-SiO2 composite aerogel via atmospheric pressure drying method and its characterization
LI Ke1,2,3, CHEN Lin2,3, NIU Sheng-jie1,2,3, ZHENG Kang2,3, ZHANG Xian2,3, TIAN Xing-you2,3
1. Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, China;
2. University of Science and Technology of China, Hefei 230026, China;
3. Key Laboratory of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230088, China
下载:  PDF (4088KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以正硅酸乙酯(TEOS)为硅源,原位合成的SiO2纳米纤维为增强相,采用溶胶-凝胶法、三甲基氯硅烷(TMCS)表面改性和常压干燥工艺制备SiO2纳米纤维-SiO2复合气凝胶,利用SEM、XRD、FT-IR、BET和TG等手段对复合气凝胶的相关结构和性质进行表征,研究了SiO2纳米纤维的复合对气凝胶的影响。结果表明,SiO2纳米纤维的加入可以形成有效的骨架结构,改善气凝胶的微观形貌和空间结构,并且有着良好的兼容性、分散性和热稳定性,保持了较高的孔隙率等优良性能,所得复合气凝胶孔径为10~20 nm,孔隙率达97%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李可
陈林
牛胜杰
郑康
张献
田兴友
关键词:  SiO2气凝胶  SiO2纳米纤维  常压干燥  复合材料    
Abstract: SiO2 nanofibers-SiO2 composite aerogel is prepared through sol-gel method,trimethyl chlorosilane-leading surface modification method and atmospheric pressure drying method,with tetraethyl orthosilicate (TEOS) as silicon source and in-situ synthesized SiO2 nanofibers as reinforcing phase.The structure and properties of the composite aerogel are characterized by scanning electron microscopy,X-ray diffraction,Fourier transform infrared spectroscopy,BET surface analysis and thermogravimetric analysis.The effects of SiO2 nanofibers on the aerogels are also investigated.The results show that the addition of SiO2 nanofibers can form an effective framework structure to improve the micro morphology and space structure of the aerogel with good compatibility,dispersion and thermal stability,maintaining high porosity.The obtained composite aerogel has a pore size in the range of 10-20 nm and a porosity of 97%.
Key words:  silica aerogel    SiO2 nanofibers    atmospheric pressure drying    composite materials
收稿日期:  2017-12-19      修回日期:  2018-06-07           出版日期:  2018-08-20
TB332  
通讯作者:  陈林(1979-),男,博士,研究员,研究方向为有机无机纳米复合材料,通讯联系人,chenlin@issp.ac.cn    E-mail:  chenlin@issp.ac.cn
作者简介:  李可(1993-),男,硕士,研究方向为纳米多孔气凝胶材料,kelichn@126.com。
引用本文:    
李可, 陈林, 牛胜杰, 郑康, 张献, 田兴友. 常压干燥工艺制备SiO2纳米纤维-SiO2复合气凝胶及其表征[J]. 现代化工, 2018, 38(8): 172-175.
LI Ke, CHEN Lin, NIU Sheng-jie, ZHENG Kang, ZHANG Xian, TIAN Xing-you. Preparation of SiO2 nanofibers-SiO2 composite aerogel via atmospheric pressure drying method and its characterization. Modern Chemical Industry, 2018, 38(8): 172-175.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.08.037  或          http://www.xdhg.com.cn/CN/Y2018/V38/I8/172
[1] Aegerter M,Leventis N,Koebel M M.Aerogels handbook[M].New York:Springer Science & Business Media,2011.
[2] Bheekhun N,Abu Talib A R,Hassan M R.Aerogels in aerospace:An overview[J].Advances in Materials Science and Engineering,2013,2013:1-18.
[3] Cuce E,Cuce P M,Wood C J,et al.Toward aerogel based thermal superinsulation in buildings:A comprehensive review[J].Renewable and Sustainable Energy Reviews,2014,34:273-299.
[4] Boday D J,Stover R J,Muriithi B,et al.Strong,low-density nanocomposites by chemical vapor deposition and polymerization of cyanoacrylates on aminated silica aerogels[J].ACS Applied Materials & Interfaces,2009,1(7):1364-1369.
[5] Shao Z,He X,Niu Z,et al.Ambient pressure dried shape-controllable sodium silicate based composite silica aerogel monoliths[J].Materials Chemistry and Physics,2015,162:346-353.
[6] Hwang S W,Jung H,Hyun S H,et al.Effective preparation of crack-free silica aerogels via ambient drying[J].Journal of Sol-Gel Science and Technology,2007,41(2):139-146.
[7] Maleki H,Durães L,Portugal A.An overview on silica aerogels synthesis and different mechanical reinforcing strategies[J].Journal of Non-Crystalline Solids,2014,385:55-74.
[8] Maleki H,Durães L,Portugal A.Synthesis of mechanically reinforced silica aerogels via surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization[J].J Mater Chem A,2015,3(4):1594-1600.
[9] 梁玉莹,吴会军,游秀华,等.纤维改善SiO2气凝胶的力学和隔热性能研究进展[J].硅酸盐通报,2017,36(4):1216-1222.
[10] Yuan B,Ding S,Wang D,et al.Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming[J].Materials Letters,2012,75:204-206.
[11] Deng Z,Wang J,Wu A,et al.High strength SiO2 aerogel insulation[J].Journal of Non-Crystalline Solids,1998,225(Supplement C):101-104.
[12] 董志军,李轩科,袁观明.莫来石纤维增强SiO2气凝胶复合材料的制备及性能研究[J].化工新型材料,2006,(7):58-61.
[13] Li Z,Cheng X,He S,et al.Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance[J].Composites Part A:Applied Science and Manufacturing,2016,84:316-325.
[14] AS'G1 losarczyk A,Wojciech S,Piotr Z,et al.Synthesis and characterization of carbon fiber/silica aerogel nanocomposites[J].Journal of Non-Crystalline Solids,2015,416:1-3.
[15] Datskos P,Sharma J.Synthesis of segmented silica rods by regulation of the growth temperature[J].Angew Chem Int Ed Engl,2014,53(2):451-454.
[16] Sarawade P B,Kim J K,Kim H K,et al.High specific surface area TEOS-based aerogels with large pore volume prepared at an ambient pressure[J].Applied Surface Science,2007,254(2):574-579.
[17] Kim C E,Yoon J S,Hwang H J.Synthesis of nanoporous silica aerogel by ambient pressure drying[J].Journal of Sol-Gel Science and Technology,2008,49(1):47-52.
[1] 于露, 翟宏菊, 关壬铨, 常立民, 吴佳珆. 银基复合材料光催化性能研究新进展[J]. 现代化工, 2018, 38(7): 40-43.
[2] 代岩, 王硕, 田黎明, 肖武. FePc-TiO2/CS复合材料制备及光催化降解染料废水[J]. 现代化工, 2018, 38(7): 89-92.
[3] 王曦, 麦裕良, 张俊杰, 陈佳志, 应家伟, 文明通. MOFs材料对气态硫化合物的吸附研究进展[J]. 现代化工, 2018, 38(7): 62-66.
[4] 韩娜, 苏瑞, 王知贺, 谢艾玲, 李季, 徐仕翀. 软/硬磁纳米复相永磁材料制备及应用研究现状[J]. 现代化工, 2018, 38(6): 20-23.
[5] 黄晶, 景红霞, 王星梅, 李娜, 焦纬洲. 多元复合纳米TiO2光催化性能研究进展[J]. 现代化工, 2018, 38(5): 24-28.
[6] 马影利, 郭振华, 兴益, 刘中桃, 张聪. Co2+/AgNbO3复合海泡石材料的制备及对甲苯的光催化性能研究[J]. 现代化工, 2018, 38(3): 142-146.
[7] 朱海彬, 张纪梅, 范咏梅, 米超, 蔡宇玲, 张丽萍. 石墨烯复合材料在催化应用中的研究进展[J]. 现代化工, 2018, 38(2): 43-46.
[8] 黄艳凤, 孙晓毅, 陈玉烨, 万冬. Fe3O4-CdTe/CdS磁性荧光复合材料的制备[J]. 现代化工, 2018, 38(1): 76-79.
[9] 翟宏菊, 关壬铨, 刘书含, 曹爽, 丁田田, 付祥雪. C3N4基复合结构的合成及应用新进展[J]. 现代化工, 2018, 38(1): 23-25.
[10] 童晓梅, 冯浩, 闫子英, 郝芹芹, 王李娜. 碳纤维增强不饱和聚酯自修复复合材料的制备及性能[J]. 现代化工, 2017, 37(6): 120-123,125.
[11] 刘凡, 秦利娟, 刘艳侠. 锂离子电池硅碳负极材料的最新研究进展[J]. 现代化工, 2017, 37(12): 14-18,20.
[12] 姜晓琳, 王诗瀚. 细菌纤维素复合材料应用进展[J]. 现代化工, 2017, 37(11): 57-61.
[13] 景峰, 林本兰, 崔升, 张荣景, 程建. 纳米抗菌复合材料的研究进展[J]. 现代化工, 2016, 36(8): 29-32.
[14] 蒋春燕, 聂明, 田显辉, 李庆. 燃料电池氧还原电催化剂的研究进展[J]. 现代化工, 2016, 36(7): 17-20,22.
[15] 甫亚锋, 王秀玲, 刘勇健, 吴怡, 陈勇兵, 刘敏, 周翔. 新型磁性荧光功能纳米复合物的制备及表征[J]. 现代化工, 2016, 36(7): 109-113.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn