Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (6): 182-185    DOI: 10.16606/j.cnki.issn0253-4320.2018.06.042
  工艺与设备 本期目录 | 过刊浏览 | 高级检索 |
绝热多段甲烷化工艺研究
黄志伟, 朱萌, 张之杰, 仇汝臣
青岛科技大学化工学院, 山东 青岛 266042
Study on adiabatic multistage methanation process
HUANG Zhi-wei, ZHU Meng, ZHANG Zhi-jie, QIU Ru-chen
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
下载:  PDF (1444KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用净化后的焦炉煤气在500℃的温度下进行甲烷化反应,通过分股的方式将原料气分别通入2个甲烷化反应器,从1#反应器反应后的气体与其中一股原料混合后通入2#反应器中;从2#反应器反应后的部分气体循环至1#反应器内,其他的气体通入3#反应器内将剩余的一氧化碳、二氧化碳进行反应。利用Aspen Plus流程模拟软件对绝热多段甲烷化工艺进行了流程模拟,并优化相关参数。最终操作参数的运行结果显示,一氧化碳转化率为100%,二氧化碳转化率为99.67%,甲烷的含量由35.87%变为63.36%,为后续分离制LNG和氢气创造了条件。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄志伟
朱萌
张之杰
仇汝臣
关键词:  焦炉煤气  甲烷化  LNG  氢气  Aspen Plus    
Abstract: Methanation reaction for purified coke oven gas is carried out at 500℃.Raw gas enters two methanation reactors by two different ways.The reacted gas from the 1# reactor is mixed with another way of raw gas and then together passes into the 2# reactor.Part of the reacted gas from the 2# reactor is circulated into the 1# reactor and other reacted gas passes into the 3# reactor to react with the remaining carbon monoxide and carbon dioxide.The adiabatic multistage methanation process is simulated by using Aspen Plus process simulation software and the related parameters are optimized.Finally,the operation results of the operation parameters indicate that the conversion rates of carbon monoxide and carbon dioxide are 100% and 99.67%,respectively,and the methane content increases from 35.87% to 63.36%.This result creates conditions for subsequent separation of LNG and hydrogen.
Key words:  coke oven gas    methanation    LNG    hydrogen    Aspen Plus
收稿日期:  2017-11-27                出版日期:  2018-06-20
O643.5  
通讯作者:  仇汝臣(1963-),男,博士,教授,研究方向为绿色化学工艺,通讯联系人,8978122@163.com。    E-mail:  8978122@163.com
作者简介:  黄志伟(1994-),女,硕士生
引用本文:    
黄志伟, 朱萌, 张之杰, 仇汝臣. 绝热多段甲烷化工艺研究[J]. 现代化工, 2018, 38(6): 182-185.
HUANG Zhi-wei, ZHU Meng, ZHANG Zhi-jie, QIU Ru-chen. Study on adiabatic multistage methanation process. Modern Chemical Industry, 2018, 38(6): 182-185.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.06.042  或          http://www.xdhg.com.cn/CN/Y2018/V38/I6/182
[1] 彭景,李月馨.关于焦炉煤气中甲烷含量的探讨[J].化工中间体,2015,(10):123-125.
[2] 杨丽,汪红有.焦炉煤气的综合利用技术[J].煤炭与化工,2011,34(2):11-12.
[3] 赵亮,陈允捷.国外甲烷化技术发展现状[J].化工进展,2012,31(S1):176-178.
[4] 陈钢,郭武杰.焦炉煤气甲烷化技术进展[J].煤质技术,2017,(2):46-51.
[5] 董亮,于庆波.我国焦炉煤气甲烷化制天然气工艺发展现状与展望[C]//全国能源与热工学术年会,2013.
[6] 吴思操.影响甲烷化催化剂正常使用的因素分析[J].小氮肥,2005,(4):8-11.
[7] 何一夫.基于Aspen Plus软件的甲烷化工艺模型[J].现代化工,2012,32(4):107-109.
[8] 史航.煤气净化湿法脱硫的化学工艺分析[J].辽宁化工,2016,45(5):25-27.
[9] 杨春生.煤制天然气产业发展前景分析[J].中外能源,2010,15(7):35-40.
[10] 朱瑞春,公维恒,范少锋.煤制天然气工艺技术研究[J].洁净煤技术,2011,17(6):81-85.
[11] 汪元博,武明华,徐妍,等.焦炉煤气制取液化天然气的现状及展望[J].燃料与化工,2015,46(2):43-45.
[12] 廖小敏.聚乙二醇二甲醚(NHD)脱硫系统模拟与优化改造[D].南昌:南昌大学,2010.
[13] Razzaq R,Zhu H,Li J,et al.Catalytic methanation of CO and CO2 in coke oven gas over.Ni-Co/ZrO2-CeO2[J].Industrial & Engineering Chemistry Research,2013,52(6):2247-2256.
[14] Faridbod F,Ganjali M R,Dinarvand R,et al.First in China process unit for low temperature methanation of coke oven gas completed continuous operation tests[J].China Petroleum Processing & Petrochemical Technology,2011,44(3):32-32.
[15] Zhu H,Razzaq R,Jiang L,et al.Low-temperature methanation of CO in coke oven gas using single nanosized Co3O4,catalysts[J].Catalysis Communications,2012,23(21):43-47.
[16] 崔凯凯,周桂林,谢红梅.二氧化碳甲烷化催化剂的研究进展[J].化工进展,2015,34(3):724-730.
[17] 李安学,李春启,左玉帮,等.合成气甲烷化工艺技术研究进展[J].化工进展,2015,34(11):3898-3905.
[18] 胡亮华,冯再南,姚泽龙,等.焦炉煤气甲烷化工艺过程的Aspen Plus模拟[J].天然气化工:C1化学与化工,2013,38(3):53-56.
[19] 范峻铭,诸林,李璐伶,等.基于Aspen Plus的焦炉气制甲烷工艺模拟与分析[J].煤化工,2013,41(5):32-34.
[20] 李国忠,王季秋,刘永健.基于Aspen Plus加压甲烷化工艺流程模拟与研究[J].节能,2012,31(5):35-38.
[21] 王二东,王海洋,丁国忠,等.不同工艺条件下耐硫甲烷化催化剂的反应活性研究[J].化学反应工程与工艺,2012,28(1):75-81.
[1] 金兆荣, 侯峰, 徐宏. 基于Aspen Plus的热等离子体气化含油污泥的模拟研究[J]. 现代化工, 2018, 38(9): 224-228.
[2] 刘艳杰, 王犇, 潘高峰. 乙酸异丙酯回收工艺模拟与优化[J]. 现代化工, 2018, 38(9): 215-218.
[3] 郝五兴, 张静, 薛飞, 张永发. 褐煤半焦热解温度对其加氢制甲烷活性的影响[J]. 现代化工, 2018, 38(9): 85-89.
[4] 黄振, 邓征兵, 陈德珍, 何方, 李海滨. 基于NiFe2O4载氧体的化学链蒸汽重整制氢实验研究[J]. 现代化工, 2018, 38(9): 90-95.
[5] 何英华, 朱丽娜, 刘龙, 孙维, 张德顺. 溶剂脱沥青改质技术处理加拿大油砂沥青模拟研究[J]. 现代化工, 2018, 38(8): 227-230.
[6] 田伟, 阎富生, 黄永红, 李亚晴, 杜圣飞, 梁丕荣. 碱土金属对石油焦直接制氢的模拟分析[J]. 现代化工, 2018, 38(7): 208-213.
[7] 韩淑萃, 杨金杯. 丙酸甲酯和甲醇共沸物萃取精馏分离工艺的研究[J]. 现代化工, 2018, 38(7): 214-218.
[8] 李静, 王克良, 连明磊, 李志, 吴红, 李琳, 叶昆. [DMIM]MS萃取精馏制取无水乙醇的过程模拟[J]. 现代化工, 2018, 38(7): 223-226.
[9] 江健荣, 冯霄, 段明哲, 张志刚. 深冷空分装置不同产品纯度下的产品能耗[J]. 现代化工, 2018, 38(6): 198-201.
[10] 马春蕾, 翟丽军. 正交设计优化分壁式萃取精馏分离乙酸异丙酯-异丙醇的模拟研究[J]. 现代化工, 2018, 38(6): 202-205.
[11] 钟小文. 镍钼比对Ni-Mo-N催化剂结构及苯/噻吩加氢性能的影响[J]. 现代化工, 2018, 38(5): 66-69,71.
[12] 郑清娟, 李士雨, 杨玉敏. 焦炉煤气制甲醇工艺中循环气量的优化[J]. 现代化工, 2018, 38(5): 219-223.
[13] 柳康, 刘沅, 樊强, 陈雄, 任永强, 许世森. 燃烧前CO2捕集MDEA系统模拟及优化[J]. 现代化工, 2018, 38(5): 201-204.
[14] 吴红梅, 郭宇, 吕兴旺, 陈强强, 殷慧敏. 煤基含氮合成气一步法制二甲醚工艺的模拟与优化[J]. 现代化工, 2018, 38(5): 205-209,211.
[15] 唐建可, 翟丽军. 分壁式萃取精馏分离环己烷-环己烯的模拟与优化[J]. 现代化工, 2018, 38(5): 215-218.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn