Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (6): 38-42    DOI: 10.16606/j.cnki.issn0253-4320.2018.06.009
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
石墨烯改性材料在气体吸附分离方面的研究进展
张祎曼1, 孙豫2, 孙万虹2, 田松1
1. 西北民族大学化工学院, 甘肃 兰州 730100;
2. 西北民族大学实验中心, 甘肃 兰州 730100
Advances of graphene-based modified materials in gas adsorption and separation
ZHANG Yi-man1, SUN Yu2, SUN Wan-hong2, TIAN Song1
1. School of Chemical Engineering, Northwest Minzu University, Lanzhou 730100, China;
2. Experimental Center of Northwest Minzu University, Lanzhou 730100, China
下载:  PDF (1497KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 从功能化处理的石墨烯在气体吸附及分离方面出发,综述了石墨烯基改性材料在储氢、气敏检测有毒气体、混合气体分离方面的最新应用研究进展,最后对石墨烯基改性材料在未来气体处理领域的应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张祎曼
孙豫
孙万虹
田松
关键词:  石墨烯  功能化  储氢  气敏检测  气体分离    
Abstract: The advances in the applications of graphene-based modified materials in the fields of hydrogen storage,gas-sensitive detection for toxic gases and gas separation are described respectively from the application of functionalized graphene in adsorption and separation of gas.Finally,the application of graphene-based modified materials in future gas treatment field is prospected.
Key words:  graphene    functionalization    hydrogen storage    gas-sensitive detection    gas separation
收稿日期:  2018-02-28                出版日期:  2018-06-20
TB383  
基金资助: 甘肃省省青年科技基金计划资助项目(17JR5RA282);中央高校基本科研业务费专项资金项目(31920160055)
通讯作者:  孙豫(1987-),女,硕士,研究方向为纳米功能材料,通讯联系人,sunyu794@163.com。    E-mail:  sunyu794@163.com
作者简介:  张祎曼(1996-),女,本科生
引用本文:    
张祎曼, 孙豫, 孙万虹, 田松. 石墨烯改性材料在气体吸附分离方面的研究进展[J]. 现代化工, 2018, 38(6): 38-42.
ZHANG Yi-man, SUN Yu, SUN Wan-hong, TIAN Song. Advances of graphene-based modified materials in gas adsorption and separation. Modern Chemical Industry, 2018, 38(6): 38-42.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.06.009  或          http://www.xdhg.com.cn/CN/Y2018/V38/I6/38
[1] Novoselov K S,Geim A K,Morozov S V,et al.Electric field effection atomically thin carbon films[J].Science,2004,306(5696):666-669.
[2] Lee C,Wei X,Kysar J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388.
[3] Balandin A A,Ghosh S,Bao W,et al.Superior thermal conductivity of single-layer graphene[J].Nano Lett,2008,8(3):902-907.
[4] Gao Y,Li Y,Zhang L,et al.Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide[J].J Colloid Interf Sci,2012,368(1):540-546.
[5] Li F,Zhao J,Chen Z J,et al.Fe-anchored graphene oxide:A low-cost and easily accessible catalyst for low-temperature CO oxidation[J].Phys Chem C,2012,116(3):2507-2514.
[6] Zhang R,Hummelgard M,Lv G,et al.Real time monitoring of the drug release of rhodamine B on graphene oxide[J].Carbon,2010,49(4):1126-1132.
[7] Geim A K,Novoselov K S.The rise of graphene[J].Nature Materials,2007,6:183-191.
[8] Yu J G,Yu L Y,Yang H,et al.Graphene nanosheets as novel adsorbents in adsorption,preconcentration and removal of gases,organic compounds and metal ions[J].Sci Total Environ,2015,502(1):70-79.
[9] Rong X,Qiu F,Qin J,et al.A facile hydrothermal synthesis,adsorption kinetics and isotherms to Congo Red azo-dye from aqueous solution of NiO/graphene nanosheets adsorbent[J].J Ind Eng Chem,2015,26(25):354-363.
[10] Azadeh K,Abdolhosein F,Morteza G A,et al.First-principles vdW-DF study on the enhanced hydrogen storage capacity of Pt-adsorbed graphene[J].J Mol Model,2014,20:2230.
[11] Zhou Chunyu,Jerzy A Szpunar,Cui Xiaoyu,et al.Hydrogen storage performance in Pd/graphene nanocomposites[J].Mater Interfaces,2016,8(39):25933-25940.
[12] Chen C H,Chung T Y,Shen C C,et al.Hydrogen storage performance in palladium doped grapheme/carbon composites[J].Int J Hydrog Energy,2013,38:3681-3688.
[13] Wu Chunlai,Fan Jing.Application of graphene materials in purification of heavy metal wastewater adsorption[J].Progress in Chemical Engineering,2013,32(11):2668-2673.
[14] Sui Z Y,Meng H,Li J T,et al.High surface area porous carbons produced by steam activation of graphene aerogels[J].Mater Chem A,2014,2:9891-9898.
[15] Huang Zhiyuan,Xia Kaisheng,Lin Zheng,et al.Facile and scalable synthesis of hierarchically porous graphene architecture for hydrogen storage and high-rate supercapacitors[J].J Mater Sci,2017,28(23):17675-17681.
[16] Green A A,Hersam M C.Solution phase production of graphene with controlled thickness via density differentiation[J].Nano Lett,2009,9(12):4031-4036.
[17] Yuan Wenhui,Li Baoqing,Li Li.Improve of liquid phase oxidation reduction method for efficient hydrogen adsorption with graphene[J].Chinese Journal of Physical Chemistry,2011,27(9):2244-2250.
[18] Bogue R.Nanomaterials for gas sensing:A review of recent research[J].Sensor Rev,2014,34(1):1-8.
[19] Gautam M,Jayatissa A H.Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles[J].Solid-State Electron,2012,78:159-165.
[20] Huang L,Wang Z,Zhang J,et al.Fully printed,rapid-response sensors based on chemically modified graphene for detecting NO2 at room temperature[J].ACS Appl Mater Interface,2014,6(10):7426-7433.
[21] Wang B,Pantelides S T.Controllable healing of defects and nitrogen doping of graphene by CO and NO molecules[J].Phys Rev B,2011,83:245403.
[22] Xian Q,Qingyuan M,Yuan F,et al.Strain effects onenhanced hydrogen sulphide detection capability of Ag-decorated defective graphene[J].Mod Phys Lett B,2012,26(25):1250166.
[23] Dong Y L,Zhang X F,Cheng X L,et al.Highly selective NO2 sensor at room temperature based on nanocomposites of hierarchical nanosphere-like alpha-Fe2O3 and reduced graphene oxide[J].RSC Adv,2014,4(101):57493-57500.
[24] Zhou L S,Shen F P,Tian X K,et al.Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gassensing with ultrahigh sensitivity[J].Nanoscale,2013,5:1564-1569.
[25] Peng Jiaqi,Wang Ziying,Wang Rui,et al.Studies on QCM-type NO2 gas sensor based on graphene composites at room temperature[J].Chem Res,2016,32(6):924-928.
[26] Liu H,Dai S,Jiang D E,et al.Insights into CO2/N2 separation through nanoporous graphene from molecular dynamics[J].Nanoscale,2013,5:9984-9987.
[27] Du H L,Li J Y,Zhang J,et al.Separation of hydrogen and nitrogen gases with porous graphene[J].J Phys Chem C,2011,115:23261-23266.
[28] Zhao Y D,Xie Y Z,Liu Z K,et al.Two-dimensionalmaterial membranes:An emerging platform for controllable mass transportapplications[J].Small,2014,10:4521-4542.
[29] Xu Jing,Sang Pengpeng,Wei Xing,et al.Insights into the H2/CH4 separation through two-dimensional graphene channels:Influence of edge functionalization[J].Nanoscale Research Letters,2015,10:492.
[30] Xue Q,Shan M,Tao Y,et al.N-doped porous graphene for carbon dioxide separation:A molecular dynamics study[J].Chin Sci Bull,2014,59(29/30):3919-3925.
[1] 张鑫, 王永波, 王林昕, 刘恩周, 胡晓云, 樊君. 氧化石墨烯载药体系负载甲硝唑及体外释放的研究[J]. 现代化工, 2018, 38(9): 127-131.
[2] 王钊, 岳红彦, 俞泽民, 高鑫, 姚龙辉, 王宝. 化学气相沉积制备泡沫石墨烯超级电容器电极研究进展[J]. 现代化工, 2018, 38(9): 33-35,37.
[3] 张萍花, 李梦婷, 陈建钧, 王红艳, 史洪伟, 燕云洁, 姜桃. 银负载石墨烯复合材料的制备及光催化性能研究[J]. 现代化工, 2018, 38(9): 81-84,86.
[4] 郝文, 周鹏, 余昊霖, 文晓刚. SnS2纳米花/石墨烯锂离子电池负极材料合成及其电化学性能研究[J]. 现代化工, 2018, 38(8): 103-107.
[5] 蔡亭伟, 丁颖, 徐丽慧. 三维石墨烯基光催化剂的研究进展[J]. 现代化工, 2018, 38(8): 17-22.
[6] 张秀娟, 刘红艳, 张海荣, 张冠华. 功能化金纳米颗粒对湖水样品中Pb2+的检测研究[J]. 现代化工, 2018, 38(7): 236-238.
[7] 孙长兵, 陈思浩. 三氧化二铁和碳复合材料在锂离子电池负极中的研究新进展[J]. 现代化工, 2018, 38(6): 59-63.
[8] 许世超, 董凯, 多浩, 朱天哲, 乔阳. 基于光催化技术的VOCs空气净化器的设计及研究[J]. 现代化工, 2018, 38(6): 117-121.
[9] 黄海波, 沈勇, 杨明荣, 徐丽慧, 王黎明, 王海洋. 海胆状MnO2/RGO复合材料的制备及吸波性能研究[J]. 现代化工, 2018, 38(6): 154-157,159.
[10] 代岩, 杨晓辰, 盖丽梅, 郗元. 气体在聚三氟丙基甲基硅氧烷膜中的渗透性[J]. 现代化工, 2018, 38(5): 62-65.
[11] 李子庆, 赫文秀, 张永强, 刘斌, 蒋梦. 两步法原位制备NiO/N-RGO复合材料及其电化学性能[J]. 现代化工, 2018, 38(3): 138-141,143.
[12] 李欣悦, 高仕谦, 董南巡, 钱飞跃, 张占恩. 磁性氧化石墨烯固相萃取-高效液相色谱质谱法测定水中的氟喹诺酮残留[J]. 现代化工, 2018, 38(3): 233-237.
[13] 李子庆, 赫文秀, 张永强, 刘斌, 蒋梦. 定向制备不同尺寸的3D掺氮石墨烯及其表征[J]. 现代化工, 2018, 38(2): 110-114.
[14] 朱海彬, 张纪梅, 范咏梅, 米超, 蔡宇玲, 张丽萍. 石墨烯复合材料在催化应用中的研究进展[J]. 现代化工, 2018, 38(2): 43-46.
[15] 李子庆, 赫文秀, 张永强, 刘斌. 不同功率下微波制备掺氮石墨烯及其性能研究[J]. 现代化工, 2018, 38(1): 84-88.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn