Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (4): 82-86    DOI: 10.16606/j.cnki.issn0253-4320.2018.04.019
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
羧甲基魔芋葡甘露聚糖的制备及表征
方坤1, 李坚斌1,2, 魏群舒1, 聂卉1, 刘培华1, 陈雨1, 江宁宁1
1. 广西大学轻工与食品工程学院, 广西 南宁 530004;
2. 广西蔗糖产业协同创新中心, 广西 南宁 530004
Preparation and characterization of carboxymethyl modified konjac glucomannan
FANG Kun1, LI Jian-bin1,2, WEI Qun-shu1, NIE Hui1, LIU Pei-Hua1, CHEN Yu1, JIANG Ning-ning1
1. Light Industry and Food Engineering College, Guangxi University, Nanning 530004, China;
2. Guangxi Collaborative Innovation Center for Guangxi Sucrose Industry, Nanning 530004, China
下载:  PDF (3314KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过对魔芋葡甘露聚糖进行羧甲基化改性,制备出具有不同取代度的羧甲基魔芋葡甘露聚糖,并确定其最佳工艺条件。利用红外光谱法、差示扫描热量法及电镜扫描对羧甲基魔芋葡甘露聚糖进行表征。结果表明,以取代度为参考指标,魔芋葡甘露聚糖羧甲基改性的工艺条件为:乙醇体积分数为70%,反应体系pH为11.0,醚化温度为50.0℃,醚化时间为3 h,碱化时间为2 h;KGM主链分子上引入了羧甲基基团,其热力学行为被改变,随着取代度的增加,羧甲基魔芋葡甘露聚糖颗粒体积比未改性的大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方坤
李坚斌
魏群舒
聂卉
刘培华
陈雨
江宁宁
关键词:  魔芋葡甘露聚糖  羧甲基化  取代度  工艺条件    
Abstract: Carboxymethyl konjac glucomannan (KGM) with different substitution degrees is prepared by carboxymethyl modification of konjac glucomannan,and the optimal process conditions are determined.A series of characterization studies of carboxymethyl konjac glucomannan are carried out by infrared spectroscopy,differential scanning calorimetry and scanning electron microscopy.The results show that the optimum conditions taking substitution degree as reference index are as follows:volumetric concentration of ethanol is 70%,pH of reaction system is 11.0,etherification temperature is 50.0℃,etherification time is 3 h,and the alkalization time is 2 h.The thermodynamic behavior is changed because the carboxymethyl groups are added into KGM backbone molecules.With the increase of the substitution degree,the volume of carboxymethyl konjac glucomannan particles is larger than that of unmodified ones.
Key words:  konjac glucomannan    carboxymethyl    substitution degree    process conditions
收稿日期:  2017-09-30                出版日期:  2018-04-20
TQ28  
基金资助: 国家自然科学基金项目(20864001,31160326);广西科学研究与技术开发项目(桂科能10100025)资助;2016广西区特色本科专业建设项目
通讯作者:  李坚斌(1970-),女,博士,教授,博士生导师,研究方向为糖类物质生物利用及多糖结构修饰与功能材料,通讯联系人,lijb0771@126.com。    E-mail:  lijb0771@126.com
作者简介:  方坤(1992-),男,硕士研究生,研究方向为多糖结构修饰与功能材料,774025180@qq.com
引用本文:    
方坤, 李坚斌, 魏群舒, 聂卉, 刘培华, 陈雨, 江宁宁. 羧甲基魔芋葡甘露聚糖的制备及表征[J]. 现代化工, 2018, 38(4): 82-86.
FANG Kun, LI Jian-bin, WEI Qun-shu, NIE Hui, LIU Pei-Hua, CHEN Yu, JIANG Ning-ning. Preparation and characterization of carboxymethyl modified konjac glucomannan. Modern Chemical Industry, 2018, 38(4): 82-86.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.04.019  或          http://www.xdhg.com.cn/CN/Y2018/V38/I4/82
[1] Behera S S,Ray R C.Nutritional and potential health benefits of konjac glucomannan,a promising polysaccharide of elephant foot yam,Amorphophallus konjac K.Koch:A review[J].Food Reviews International,2016,33:22-43.
[2] Jian W,Siu K C,Wu J Y.Effects of pH and temperature on colloidal properties and molecular characteristics of Konjac glucomannan[J].Carbohydrate Polymers,2015,134:285-292.
[3] Behera S S,Ray R C.Konjac Glucomannan,a promising polysaccharide of amorphophallus konjac K.Koch in health care[J].International Journal of Biological Macromolecules,2016,92:942-956.
[4] Zhang C,Chen J D,Yang F Q.Konjac glucomannan,a promising polysaccharide for OCDDS[J].Carbohydrate Polymers,2014,104(1):175-181.
[5] Pang J A,Sun B.Molecular dynamics simulation of glucomannan solution[J].Structural Chemistry,2005,24(7):841-845.
[6] Zhang T,Xue Y,Li Z,et al.Effects of deacetylation of konjac glucomannan on Alaska Pollock surimi gels subjected to high-temperature (120℃) treatment[J].Food Hydrocolloids,2015,43:125-131.
[7] Jin W,Song R,Xu W,et al.Analysis of deacetylated konjac glucomannan and xanthan gum phase separation by film forming[J].Food Hydrocolloids,2015,48:320-326.
[8] Ji L,Xue Y,Zhang T,et al.The effects of microwave processing on the structure and various quality parameters of Alaska pollock surimi protein-polysaccharide gels[J].Food Hydrocolloids,2017,63:77-84.
[9] Huang Q,Ge H,Jin W,et al.Significant improvement for the functional properties of konjac glucomannan based on phase separation[J].International Journal of Food Science & Technology,2016,51(11):2396-2405.
[10] Jian W,Wu H,Wu L,et al.Effect of molecular characteristics of Konjac glucomannan on gelling and rheological properties of Tilapia myofibrillar protein[J].Carbohydrate Polymers,2016,150:21-31.
[11] Tripetch P,Borompichaichartkul C,Duangmal K,et al.Entrapment of 5-aminolevulinic acid under edible composite film of konjac glucomannan and chitosan[J].Engineering in Life Sciences,2016,16(4):386-395.
[12] Xiao M,Wan L,Corke H,et al.Characterization of konjac glucomannan-ethyl cellulose film formation via microscopy[J].International Journal of Biological Macromolecules,2016,85:434-441.
[13] Chen H,Mu R J,Pang J,et al.Structure and potential application of konjac glucomannan nano microfibril aerogel[J].Structural Chemistry,2016,35,166-168.
[14] Shi C,Pei Z,Na C,et al.Preparation and sustainable release of modified konjac glucomannan/chitosan nanospheres[J].International Journal of Biological Macromolecules,2016,91:609-614.
[15] Lu M,Li Z,Liang H,et al.Controlled release of anthocyanins from oxidized konjac glucomannan microspheres stabilized by chitosan oligosaccharides[J].Food Hydrocolloids,2015,51:476-485.
[16] Liu J,Zhang L,Hu W,et al.Preparation of konjac glucomannan-based pulsatile capsule for colonic drug delivery system and its evaluation in vitro and in vivo[J].Carbohydrate Polymers,2012,87(1):377-382.
[17] Li Z Y,Su Y L,Haq M A,et al.Konjac glucomannan/polyacrylamide bicomponent hydrogels:Self-healing originating from semi-interpenetrating network[J].Polymer,2016,103:146-151.
[18] Ni X,Fan K,Man X,et al.The control of ice crystal growth and effect on porous structure of konjac glucomannan-based aerogels[J].International Journal of Biological Macromolecules,2016,92:1130-1135.
[19] 杨晓鸿.魔芋胶的交联化学改性研究[J].应用化工,2004,33(1):9-11.
[20] Ye S,Jin W,Huang Q,et al.Da-KGM based GO-reinforced FMBO-loaded aerogels for efficient arsenic removal in aqueous solution[J].International Journal of Biological Macromolecules,2017,94:527-534.
[21] Chen Y,Zhao H,Liu X,et al.TEMPO-oxidized Konjac glucomannan as appliance for the preparation of hard capsules[J].Carbohydrate Polymers,2016,143:262-269.
[22] Long X Y,Pan J X,Yao L Q.Lipase-catalyzed esterification of konjac glucomannan in isooctane[J].Environmental Progress & Sustainable Energy,2016,35(4):1149-1155.
[23] Sang L Y,Zhou Z,Wang Y H,et al.Preparation and application of sulfated konjac glucomannan[J].Journal of Food Safety & Quality,2016,4:1432-1438.
[24] 陆国太,马玉洁,姜迪,等.羧甲基菊粉合成工艺优化探究[J].食品研究与开发,2017,(2):81-85.
[25] 黄静,潘丽军.一种快速准确测定羧甲基淀粉取代度的方法[J].食品工业科技,2003,3:82-58.
[26] 吴先辉,马腾飞,郑良燕,等.云杉半乳葡甘露聚糖的结构表征研究[J].热带作物学报,2014,35(11):2199-2204.
[1] 徐珍珍, 祝志峰, 李伟, 张朝辉. 季铵醚化-辛烯基琥珀酸酯化淀粉浆料的稳定性及生物降解性[J]. 现代化工, 2018, 38(7): 107-111.
[2] 周剑林, 刘伟银, 冯涛. H2O2氧化胜利褐煤制备腐植酸的影响研究[J]. 现代化工, 2018, 38(2): 91-94.
[3] 王文科, 赵丽萍, 陶志平. 不同分子筛催化剂对烯烃齐聚合成中间馏分油的影响[J]. 现代化工, 2018, 38(2): 39-42,44.
[4] 宋毛宁, 郭兴梅, 崔海涛, 李振荣, 康荷菲, 王季茹, 赵亮富. 煤焦油加氢脱芳工艺条件的优化[J]. 现代化工, 2017, 37(7): 100-104.
[5] 赵风云, 曹占欣, 刘硕磊, 张向京, 胡永琪, 张清洁. 流化床甲醇制汽油工艺条件的研究[J]. 现代化工, 2017, 37(7): 166-170.
[6] 王雅君, 李姗珊, 姚宗路, 赵立欣, 邱凌. 生物炭生产工艺与还田效果研究进展[J]. 现代化工, 2017, 37(5): 17-20.
[7] 崔咏梅, 廉新培, 赵风云, 胡永琪, 袁中凯, 郝相儒. 热溶剂萃取法制备超纯煤的研究进展[J]. 现代化工, 2016, 36(9): 49-53.
[8] 张勇, 唐盛伟, 甘攀学, 张涛. NMMO/H2O均相体系制备羧甲基纤维素的研究[J]. 现代化工, 2016, 36(9): 84-87.
[9] 李成国, 吴红丽, 丁佳佳, 刘健, 甘礼惠, 龙敏南, 谢茹胜. 高取代度芒草醋酸纤维素的制备及其表征[J]. 现代化工, 2016, 36(3): 91-96.
[10] 徐珍珍, 张朝辉, 祝志峰, 鲍乐, 刘立超. 十二烯基琥珀酸淀粉酯浆料的合成工艺及浆纱性能探讨[J]. 现代化工, 2016, 36(10): 138-141.
[11] 凡俊琳, 赵文恩. 非均相体系高取代度羟乙基纤维素的制备及表征[J]. 现代化工, 2016, 36(1): 75-77.
[12] 余小龙, 刘健, 甘礼惠, 黎海龙, 龙敏南. 竹屑制备高取代度羧甲基纤维素钠的优化及其表征[J]. 现代化工, 2015, 35(8): 109-114.
[13] 包文杰, 李永伦, 高山松, 张德祥. 碱盐法提取煤加氢液化轻油中的低级酚[J]. 现代化工, 2015, 35(6): 110-112,114.
[14] 吴萌, 陈雁南, 孙立田, 卢亚平. 一种合成季铵盐阳离子瓜尔胶的新方法[J]. 现代化工, 2014, 34(7): 113-115,117.
[15] 高飞,王秀绘,崔俊峰,王文清,赫明成,李庆文,马俊,张兵. 重油催化裂化提高汽油辛烷值的措施探讨[J]. , 2011, 31(2): 0-0.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn