Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (3): 156-160    DOI: 10.16606/j.cnki.issn0253-4320.2018.03.034
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
荷正电聚酰胺有机/无机杂化复合纳滤膜的制备和脱盐性能研究
江志彬1,3, 杨浩1, 李诗情1, 涂凯3, 陈顺权3, 苗晶2,3
1. 武汉工程大学绿色化工过程教育部重点实验室, 湖北 武汉 430073;
2. 深圳先进技术研究院, 广东 深圳 518055;
3. 广东省膜材料和膜分离重点实验室, 广州中国科学院先进技术研究所, 广东 广州 511458
Preparation and desalination performance of positively charged polyamide hybrid composite nanofiltration membranes
JIANG Zhi-bin1,3, YANG Hao1, LI Shi-qing1, TU Kai3, CHEN Shun-quan3, MIAO Jing2,3
1. Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China;
2. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
3. Guangdong Provincial Key Laboratory of Membrane Materials and Membrane Separation, Guangzhou Institute of Advanced Technology of Chinese Academy of Sciences, Guangzhou 511458, China
下载:  PDF (3550KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以聚砜(PSF)超滤基膜为支撑层,将氨基化多壁碳纳米管(MWCNTs-NH2)分散在聚乙烯亚胺(PEI)水溶液中得到水相溶液,与间苯二甲酰氯(IPC)和均苯三甲酰氯(TMC)的混合有机相溶液进行界面聚合反应,制备了荷正电氨基化多壁碳纳米管/聚酰胺/聚砜(MWCNTs-NH2/PA/PSF)有机-无机杂化复合纳滤膜,并确定了最佳的MWCNTs-NH2质量分数为0.16%。优化制备条件所制得的MWCNTs-NH2/PA活性层厚度为155 nm,较PA活性层薄。在0.4 MPa、室温下,对1 000 mg/L MgCl2水溶液的截留率为93.0%,通量为13.9 L/(m2·h)。该种荷正电的聚酰胺杂化复合纳滤膜对不同无机盐有不同的截留性能,可应用于海水淡化的预处理、硬水软化、饮用水净化等。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
江志彬
杨浩
李诗情
涂凯
陈顺权
苗晶
关键词:  氨基化多壁碳纳米管  聚酰胺  荷正电  杂化复合纳滤膜  截留性能    
Abstract: The aqueous phase is formed by dispersing aminated multi-walled carbon nanotubes (MWCNTs-NH2) in the polyetherimide aqueous solution,and the organic phase is formed by mixing both isophthaloyl dichloride (IPC) and trimesoyl chloride (TMC) in hexane.Then the positively charged polyamide (PA) hybrid composite nanofiltration membranes are fabricated through making the aqueous solution and the organic phases perform interfacial polymerization on the surface of polysulfone (PSF) ultrafiltration membrane.The optimal concentration of MWCNTs-NH2 is determined as 0.16%.The thickness of active layer of MWCNTs-NH2/PA/PSF composite nanofiltration membrane prepared under optimal conditions is 155 nm,thinner than that of PA active layer.Under 0.4 MPa and ambient temperature,the rejection rate and the permeate flux of the prepared membranes against 1,000 mg·L-1 MgCl2 aqueous solution are 93.0% and 13.9 L/(m2·h),respectively.This positively charged PA hybrid composite nanofiltration membrane shows different rejection performances for different types of inorganic electrolytes,and can be applied to the pretreatment of seawater desalination,water softening,purification of drinking water,etc.
Key words:  aminated multi-walled carbon nanotubes    polyamide    positively charged    hybrid composite nanofiltration membrane    rejection performance
收稿日期:  2017-08-18                出版日期:  2018-03-20
TQ028.8  
基金资助: 深圳基础研究项目(JCYJ20150630114942296);广东南沙自贸区国际合作项目(2015GJ002);广东省产学研合作项目(2016B090918048);武汉工程大学第八届研究生教育创新基金立项项目(CX2016166)
通讯作者:  苗晶(1973-),女,博士,副研究员,从事先进分离膜材料和吸附材料的研究,通讯联系人,jing.miao@giat.ac.cn。    E-mail:  jing.miao@giat.ac.cn
作者简介:  江志彬(1992-),男,硕士研究生,从事荷电性纳滤膜分离材料的制备与应用,zb.jiang@giat.ac.cn
引用本文:    
江志彬, 杨浩, 李诗情, 涂凯, 陈顺权, 苗晶. 荷正电聚酰胺有机/无机杂化复合纳滤膜的制备和脱盐性能研究[J]. 现代化工, 2018, 38(3): 156-160.
JIANG Zhi-bin, YANG Hao, LI Shi-qing, TU Kai, CHEN Shun-quan, MIAO Jing. Preparation and desalination performance of positively charged polyamide hybrid composite nanofiltration membranes. Modern Chemical Industry, 2018, 38(3): 156-160.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.03.034  或          http://www.xdhg.com.cn/CN/Y2018/V38/I3/156
[1] Zhang Y,Tian M,Xu K.Current development of membrane separation technology[J].Modern Chemical Industry,2017,37(4):6-10.
[2] 张继军,袁俊生.海水脱钙技术研究进展及发展趋势[J].现代化工,2013,33(3):38-41.
[3] 姜雨薇,冉艳红.纳滤膜技术在废水处理中的应用与发展趋势[J].现代化工,2011,31(2):25-28.
[4] 毕飞,陈欢林,高从堦.纳滤膜去除饮用水中微量有机物的研究进展[J].现代化工,2011,31(7):21-28.
[5] Mohammad A W,Teow Y,Ang W,et al.Nanofiltration membranes review:Recent advances and future prospects[J].Desalination,2015,356:226-254.
[6] Liu S,Fang F,Wu J,et al.The anti-biofouling properties of thin-film composite nanofiltration membranes grafted with biogenic silver nanoparticles[J].Desalination,2015,375:121-128.
[7] Andrade P F,de Faria A F,Oliveira S R,et al.Improved antibacterial activity of nanofiltration polysulfone membranes modified with silver nanoparticles[J].Water Research,2015,81:333-342.
[8] Hu D,Xu Z L,Wei Y M.A high performance silica-fluoropolyamide nanofiltration membrane prepared by interfacial polymerization[J].Separation and Purification Technology,2013,110:31-38.
[9] Li H,Shi W,Zhu H,et al.Effects of zinc oxide nanospheres on the separation performance of hollow fiber poly (piperazine-amide) composite nanofiltration membranes[J].Fibers and Polymers,2016,17(6):836-846.
[10] Peyravi M,Jahanshahi M,Rahimpour A,et al.Novel thin film nanocomposite membranes incorporated with functionalized TiO2 nanoparticles for organic solvent nanofiltration[J].Chemical Engineering Journal,2014,241:155-166.
[11] Shao L,Cheng X,Wang Z,et al.Tuning the performance of polypyrrole-based solvent-resistant composite nanofiltration membranes by optimizing polymerization conditions and incorporating graphene oxide[J].Journal of Membrane Science,2014,452:82-89.
[12] Wu M B,Lv Y,Yang H C,et al.Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances[J].Journal of Membrane Science,2016,515:238-244.
[13] Akbari A,Homayoonfal M.Sulfonation and mixing with TiO2 nanoparticles as two simultaneous solutions for reducing fouling of polysulfone loose nanofiltration membrane[J].Korean Journal of Chemical Engineering,2016,33(8):2439-2452.
[14] Wei Y,Zhang Y,Gao X,et al.Declining flux and narrowing nanochannels under wrinkles of compacted graphene oxide nanofiltration membranes[J].Carbon,2016,108:568-575.
[15] Wang J,Gao X,Wang J,et al.O-(Carboxymethyl)-chitosan nanofiltration membrane surface functionalized with graphene oxide nanosheets for enhanced desalting properties[J].ACS Applied Materials & Interfaces,2015,7(7):4381-4389.
[16] Rajesh S,Ismail A F,Mohan D R.Structure-property interplay of poly (amide-imide) and TiO2 nanoparticles impregnated poly (ether-sulfone) asymmetric nanofiltration membranes[J].RSC Advances,2012,2(17):6854-6870.
[17] Namvar-Mahboub M,Pakizeh M.Development of a novel thin film composite membrane by interfacial polymerization on polyetherimide/modified SiO2 support for organic solvent nanofiltration[J].Separation and Purification Technology,2013,119:35-45.
[18] Yang M,Zhao C,Zhang S,et al.Preparation of graphene oxide modified poly (m-phenylene isophthalamide) nanofiltration membrane with improved water flux and antifouling property[J].Applied Surface Science,2017,394:149-159.
[19] Wang J,Zhao C,Wang T,et al.Graphene oxide polypiperazine-amide nanofiltration membrane for improving flux and anti-fouling in water purification[J].RSC Advances,2016,6(85):82174-82185.
[20] Zarrabi H,Yekavalangi M E,Vatanpour V,et al.Improvement in desalination performance of thin film nanocomposite nanofiltration membrane using amine-functionalized multiwalled carbon nanotube[J].Desalination,2016,394:83-90.
[21] Vatanpour V,Esmaeili M,Farahani M H D A.Fouling reduction and retention increment of polyethersulfone nanofiltration membranes embedded by amine-functionalized multi-walled carbon nanotubes[J].Journal of Membrane Science,2014,466:70-81.
[22] Xue S M,Xu Z L,Tang Y J,et al.Polypiperazine-amide nanofiltration membrane modified by different functionalized multiwalled carbon nanotubes (MWCNTs)[J].ACS Applied Material & Interfaces,2016,8(29):19135-19144.
[23] Wei X,Wang S,Shi Y,et al.Characterization of a positively charged composite nanofiltration hollow fiber membrane prepared by a simplified process[J].Desalination,2014,350:44-52.
[24] Daraei P,Madaeni S S,Ghaemi N,et al.Fabrication of PES nanofiltration membrane by simultaneous use of multi-walled carbon nanotube and surface graft polymerization method:Comparison of MWCNT and PAA modified MWCNT[J].Separation and Purification Technology,2013,104:32-44.
[25] Zhao F Y,Ji Y L,Weng X D,et al.High-flux positively charged nanocomposite nanofiltration membranes filled with poly(dopamine) modified multiwall carbon nanotubes[J].ACS Applied Material & Interfaces,2016,8(10):6693-6700.
[26] Heo J,Boateng L K,Flora J R V,et al.Comparison of flux behavior and synthetic organic compound removal by forward osmosis and reverse osmosis membranes[J].Journal of Membrane Science,2013,443:69-82.
[27] Fang W X,Shi L,Wang R.Interfacially polymerized composite nanofiltration hollow fiber membranes for low-pressure water softening[J].Journal of Membrane Science,2013,430:129-139.
[1] 侯智婕, 李巧玲. 氧化高银/聚酰胺复合膜的制备及性能研究[J]. 现代化工, 2017, 37(1): 115-117,119.
[2] 郭睿, 王超, 甄建斌, 李晓芳, 李欢乐. 阳离子聚酰胺多胺絮凝剂的制备及絮凝性能研究[J]. 现代化工, 2016, 36(9): 58-61,63.
[3] 窦晓勇, 李吉芳, 牛乐朋. 聚酰胺46合成工艺研究[J]. 现代化工, 2016, 36(8): 105-108,110.
[4] 张慧, 于思琦, 王志玲. 回收PET制备聚酰胺-酯二元醇的研究[J]. 现代化工, 2016, 36(2): 102-105.
[5] 熊联明,郭亮,陈小飞,严慧,胡臻恺. 高效稳定湿强剂PAE的制备及其关键影响因素的研究[J]. , 2010, 30(2): 0-0.
[6] 王学川,何林燕,袁绪政. 树枝状聚酰胺-胺的合成及应用[J]. , 2009, 29(8): 0-0.
[7] 章昌华. 苯环为端基官能团的疏水型聚酰胺胺树状大分子的合成及性质[J]. , 2009, 29(6): 0-0.
[8] 苗晶,陈国华等. N,O-羧甲基壳聚糖/聚砜复合纳滤膜的制备及性能研究[J]. , 2007, 27(9): 0-0.
[9] 黄瑞华,陈国华,王娟. 新型季铵化壳聚糖/聚丙烯腈(PAN)复合纳滤膜的制备及其截留性能研究[J]. , 2006, 26(13): 0-0.
[10] 李刚辉 沈一丁 赖小娟 任庆海. 环氧改性聚酰胺对淀粉基生物降解复合膜性能的影响[J]. , 2005, 25(5): 0-0.
[11] 曹荣 周莺 俞康庄. 国外聚酰胺6生产技术发展现状与经济分析[J]. , 2004, 24(13): 0-0.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn