Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2018, Vol. 38 Issue (1): 40-43    DOI: 10.16606/j.cnki.issn0253-4320.2018.01.009
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
二氧化钛-石墨烯复合材料的制备及在超级电容器中的应用
关恩昊, 岳红彦, 高鑫, 王宝, 王婉秋, 王钊, 宋姗姗, 张宏杰, 王唯一
哈尔滨理工大学材料科学与工程学院, 黑龙江 哈尔滨 150040
Preparation of TiO2-graphene composites and their applications in supercapacitor
GUAN En-hao, YUE Hong-yan, GAO Xin, WANG Bao, WANG Wan-qiu, WANG Zhao, SONG Shan-shan, ZHANG Hong-jie, WANG Wei-yi
School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
下载:  PDF (1256KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 综述了不同形貌的二氧化钛-石墨烯复合材料的制备方法以及在超级电容器领域中的应用现状,并对其应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关恩昊
岳红彦
高鑫
王宝
王婉秋
王钊
宋姗姗
张宏杰
王唯一
关键词:  二氧化钛  石墨烯  制备方法  应用    
Abstract: The preparation methods of TiO2-graphene composites with different morphologies and their applications in the supercapacitor field are reviewed.The application prospects of TiO2-graphene composites are predicted too.
Key words:  TiO2    grapheme    preparation methods    application
收稿日期:  2017-07-14                出版日期:  2018-01-20
TM53  
基金资助: 黑龙江省自然科学基金项目(LC2015020);国家留学人员科技活动项目(2015192);哈尔滨市科技创新人才基金(2016RAQXJ185);哈尔滨理工大学青年拔尖人才项目(201604)
通讯作者:  岳红彦(1978-),男,博士,教授,研究方向为新型能源存储材料和纳米传感器,通讯联系人,hyyue@hrbust.edu.cn    E-mail:  hyyue@hrbust.edu.cn
作者简介:  关恩昊(1993-),男,硕士生
引用本文:    
关恩昊, 岳红彦, 高鑫, 王宝, 王婉秋, 王钊, 宋姗姗, 张宏杰, 王唯一. 二氧化钛-石墨烯复合材料的制备及在超级电容器中的应用[J]. 现代化工, 2018, 38(1): 40-43.
GUAN En-hao, YUE Hong-yan, GAO Xin, WANG Bao, WANG Wan-qiu, WANG Zhao, SONG Shan-shan, ZHANG Hong-jie, WANG Wei-yi. Preparation of TiO2-graphene composites and their applications in supercapacitor. Modern Chemical Industry, 2018, 38(1): 40-43.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2018.01.009  或          http://www.xdhg.com.cn/CN/Y2018/V38/I1/40
[1] Yang S,Yan P,Li Y,et al.Reduced graphene oxide decorated on MnO2 nanoflakes grown on C/TiO2 nanowire arrays for electrochemical energy storage[J].Rsc Advances,2015,5(106):87521-87527.
[2] Xie B,Chen Y,Yu M,et al.Hydrothermal synthesis of layered molybdenum sulfide/N-doped graphene hybrid with enhanced supercapacitor performance[J].Carbon,2015,99:35-42.
[3] Dong X,Wang X,Wang J,et al.Synthesis of a MnO2-graphene foam hybrid with controlled MnO2,particle shape and its use as a supercapacitor electrode[J].Carbon,2012,50(13):4865-4870.
[4] Liu C,Yu Z,Neff D,et al.Graphene-based supercapacitor with an ultrahigh energy density[J].Nano Letters,2010,10(12):4863-4868.
[5] Shah M S A S,Park A R,Zhang K,et al.Green synthesis of biphasic TiO2-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity[J].Acs Applied Materials & Interfaces,2012,4(8):3893-3901.
[6] Zhou H,Zhang Y.Electrochemically self-doped TiO2 nanotube arrays for supercapacitors[J].Journal of Physical Chemistry C,2014,118(11):5626-5636.
[7] Chen J Z,Ko W Y,Yen Y C,et al.Hydrothermally processed TiO2 nanowire electrodes with antireflective and electrochromic properties[J].Acs Nano,2012,6(8):6633-6639.
[8] Wang X,Huang Y,Jia D,et al.Self-assembled sandwich-like vanadium oxide/graphene mesoporous composite as high-capacity anode material for lithium ion batteries[J].Inorganic Chemistry,2015,54(24):11799-11806.
[9] Weiss N O,Zhou H,Liao L,et al.Graphene:An emerging electronic material[J].Advanced Materials,2012,24(43):5782-5825.
[10] Das M,Datta J,Dey A,et al.One step hydrothermal synthesis of a rGO-TiO2 nanocomposite and its application on a Schottky diode:Improvement in device performance and transport properties[J].Rsc Advances,2015,5(123):101582-101592.
[11] Zhang H,Lv X,Li Y,et al.P25-graphene composite as a high performance photocatalyst[J].Acs Nano,2010,4(1):380-386.
[12] Pan X,Zhao Y,Liu S,et al.Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts[J].Acs Applied Materials & Interfaces,2012,4(8):3944-3950.
[13] Ramadoss A,Sang J K.Improved activity of a graphene-TiO2,hybrid electrode in an electrochemical supercapacitor[J].Carbon,2013,63:434-445.
[14] Zhen M,Zhu X,Zhang X,et al.Reduced graphene oxide-supported TiO2 fiber bundles with mesostructures as anode materials for lithium-Ion batteries[J].Chemistry (Weinheim an der Bergstrasse,Germany),2015,21(41):14454-14459.
[15] Ramadoss A,Kim G S,Sang J K.Fabrication of reduced graphene oxide/TiO2 nanorod/reduced graphene oxide hybrid nanostructures as electrode materials for supercapacitor applications[J].Crystengcomm,2013,15(47):10222-10229.
[16] Xiao H,Guo W,Sun B,et al.Mesoporous TiO2,and Co-doped TiO2,nanotubes/reduced graphene oxide composites as electrodes for supercapacitors[J].Electrochimica Acta,2016,190:104-117.
[17] Huang J,Cao Y,Deng Z,et al.Formation of titanate nanostructures under different NaOH concentration and their application in wastewater treatment[J].Journal of Solid State Chemistry,2011,184(3):712-719.
[18] Chen Y,Tang Y,Luo S,et al.TiO2,nanotube arrays co-loaded with Au nanoparticles and reduced graphene oxide:Facile synthesis and promising photocatalytic application[J].Journal of Alloys & Compounds,2013,578(25):242-248.
[19] Jiang L L,Lu X,Xie C M,et al.Flexible,free-standing TiO2-graphene-polypyrrole composite films as electrodes for supercapacitors[J].The Journal of Physical Chemistry C,2015,(119):3903-3910.
[20] Li W,Wang F,Feng S,et al.Sol-gel design strategy for ultradispersed TiO2 nanoparticles on graphene for high-performance lithium ion batteries[J].Journal of the American Chemical Society,2013,(135):18300-18303.
[21] Kim J,Khoh W H,Wee B H,et al.Fabrication of flexible reduced graphene oxide-TiO2 freestanding films for supercapacitor application[J].RSC Advances,2015,(5):9904-9911.
[22] Sun X,Xie M,Travis J J,et al.Pseudocapacitance of amorphous TiO2 thin films anchored to graphene and carbon nanotubes using atomic layer deposition[J].The Journal of Physical Chemistry C,2013,(117):22497-22508.
[23] Xiang C,Li M,Zhi M,et al.Reduced graphene oxide/titanium dioxide composites for supercapacitor electrodes:Shape and coupling effects[J].Journal of Materials Chemistry,2012,(22):19161-19167.
[24] Yang S,Yuan L,Song X,et al.Covalently coupled ultrafine H-TiO2 nanocrystals/nitrogen-doped graphene hybrid materials for high-performance supercapacitor[J].Acs Applied Materials & Interfaces,2015,(7):17884-17892.
[1] 张鑫, 王永波, 王林昕, 刘恩周, 胡晓云, 樊君. 氧化石墨烯载药体系负载甲硝唑及体外释放的研究[J]. 现代化工, 2018, 38(9): 127-131.
[2] 王钊, 岳红彦, 俞泽民, 高鑫, 姚龙辉, 王宝. 化学气相沉积制备泡沫石墨烯超级电容器电极研究进展[J]. 现代化工, 2018, 38(9): 33-35,37.
[3] 刘超, 罗健林, 李秋义, 李贺, 王赛显. 泡沫混凝土的生产现状及未来发展趋势[J]. 现代化工, 2018, 38(9): 10-14,16.
[4] 张萍花, 李梦婷, 陈建钧, 王红艳, 史洪伟, 燕云洁, 姜桃. 银负载石墨烯复合材料的制备及光催化性能研究[J]. 现代化工, 2018, 38(9): 81-84,86.
[5] 郝文, 周鹏, 余昊霖, 文晓刚. SnS2纳米花/石墨烯锂离子电池负极材料合成及其电化学性能研究[J]. 现代化工, 2018, 38(8): 103-107.
[6] 蔡亭伟, 丁颖, 徐丽慧. 三维石墨烯基光催化剂的研究进展[J]. 现代化工, 2018, 38(8): 17-22.
[7] 于露, 翟宏菊, 关壬铨, 常立民, 吴佳珆. 银基复合材料光催化性能研究新进展[J]. 现代化工, 2018, 38(7): 40-43.
[8] 郭斌, 王红红, 边永欢, 张轩. 蓄热式氧化器处理挥发性有机物的数值模拟技术及应用进展[J]. 现代化工, 2018, 38(7): 44-47,49.
[9] 代岩, 王硕, 田黎明, 肖武. FePc-TiO2/CS复合材料制备及光催化降解染料废水[J]. 现代化工, 2018, 38(7): 89-92.
[10] 高赛男, 刘中海, 秦冬玲, 杨刚. SAPO-34分子筛的合成及催化果糖制5-羟甲基糠醛的应用[J]. 现代化工, 2018, 38(7): 136-140.
[11] 杨松. 氨逃逸测量技术在脱硝系统中的应用研究与优化[J]. 现代化工, 2018, 38(6): 216-219.
[12] 楚素娅, 刘勇军, 周伟霞, 张陈洋, 张学勤. 纳米硫化钼微观形貌的可控制备[J]. 现代化工, 2018, 38(6): 15-19.
[13] 韩娜, 苏瑞, 王知贺, 谢艾玲, 李季, 徐仕翀. 软/硬磁纳米复相永磁材料制备及应用研究现状[J]. 现代化工, 2018, 38(6): 20-23.
[14] 张祎曼, 孙豫, 孙万虹, 田松. 石墨烯改性材料在气体吸附分离方面的研究进展[J]. 现代化工, 2018, 38(6): 38-42.
[15] 孙长兵, 陈思浩. 三氧化二铁和碳复合材料在锂离子电池负极中的研究新进展[J]. 现代化工, 2018, 38(6): 59-63.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn