Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2017, Vol. 37 Issue (12): 50-53,55    DOI: 10.16606/j.cnki.issn0253-4320.2017.12.012
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
微波加热技术在材料制备中的研究进展
万子岸1, 高飞1, 王辉2, 张兆前1, 赵小萱2, 杨明华2
1. 中国石油天然气股份有限公司石油化工研究院, 北京 102206;
2. 中国电子科技集团第十二研究所, 北京 100016
Research progress of the preparation of materials by microwave heating technology
WAN Zi-an1, GAO Fei1, WANG Hui2, ZHANG Zhao-qian1, ZHAO Xiao-xuan2, YANG Ming-hua2
1. Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China;
2. The 12 th Research Institute, China Electronics Technology Group Corporation, Beijing 100016, China
下载:  PDF (1292KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 综述了微波加热技术在部分材料制备上的研究进展,包括制备分子筛、分子筛膜、碳材料和金属有机框架材料等。讨论了微波加热方法与传统加热方法的对比,发现使用微波加热技术制备材料可以大幅度缩短制备时间,改善产品性能,具有良好发展潜力。但是目前微波加热技术主要应用于实验室研究,未来目标是要开发出大型化微波反应器,以实现微波加热技术在材料制备上的工业化应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
万子岸
高飞
王辉
张兆前
赵小萱
杨明华
关键词:  微波加热  材料制备  分子筛  分子筛膜  碳材料  金属有机框架材料    
Abstract: The research progresses for using microwave heating technology in the preparation of molecular sieves,molecular sieve membranes,carbon materials and metal organic framework (MOF) materials are reviewed.The comparison between the microwave heating method and conventional heating methods is discussed,and it is found that using microwave heating technology can shorten the preparation time of materials and improve the properties of products.The microwave heating technology has a good development prospect.At present,the microwave heating technology is mainly used in laboratory research,the future goal is to develop large scale microwave reactor in order to realize the industrialization of microwave heating technology in materials preparation applications.
Key words:  microwave heating    materials preparation    molecular sieves    molecular sieve membrane    carbon materials    metal organic framework materials
收稿日期:  2017-07-11      修回日期:  2017-10-06           出版日期:  2017-12-20
TQ420.6  
基金资助: 中国电子科技集团公司产业发展投入基金项目(J1406113)
通讯作者:  高飞(1969-),男,硕士,高级工程师,研究方向为劣质重油轻质化和轻烃脱硫技术,通讯联系人,010-80165506,gaofei@petrochina.com.cn。    E-mail:  gaofei@petrochina.com.cn
作者简介:  万子岸(1988-),男,硕士,工程师,从事微波化学方面研究,010-80165525,wanzian@petrochina.com.cn
引用本文:    
万子岸, 高飞, 王辉, 张兆前, 赵小萱, 杨明华. 微波加热技术在材料制备中的研究进展[J]. 现代化工, 2017, 37(12): 50-53,55.
WAN Zi-an, GAO Fei, WANG Hui, ZHANG Zhao-qian, ZHAO Xiao-xuan, YANG Ming-hua. Research progress of the preparation of materials by microwave heating technology. Modern Chemical Industry, 2017, 37(12): 50-53,55.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2017.12.012  或          http://www.xdhg.com.cn/CN/Y2017/V37/I12/50
[1] Nuechter M,Ondruschka B,Bonrath W,et al.Microwave-assisted synthesis:A critical technology overview[J].Green Chemistry,2004,6(51):128-141.
[2] Galema S A.Microwave chemistry[J].Chemical Society Reviews,1997,26:233-238.
[3] Muraza O,Abdul-Lateef A,Tago T,et al.Microwave-assisted hydrothermal synthesis of submicron ZSM-22 zeolites and their applications in light olefin production[J].Microporous & Mesoporous Materials,2015,206:136-143.
[4] Khalil U,Muraza O.Microwave-assisted hydrothermal synthesis of mordenite zeolite:Optimization of synthesis parameters[J].Microporous & Mesoporous Materials,2016,232:211-217.
[5] Zhang J,Li M,Lin Y,et al.Synthesis and characterization of all-silica DDR zeolite by microwave heating[J].Microporous & Mesoporous Materials,2015,219:103-111.
[6] Parmar S,Pant K K,John M,et al.Hydroisomerization of long chain n-paraffins over Pt/ZSM-22:Influence of Si/Al ratio[J].Energy & Fuels,2015,29(2):332-332.
[7] Li G,Hou H M,Lin R S.Rapid synthesis of mordenite crystals by microwave heating[J].Solid State Sciences,2011,13(3):662-664.
[8] Bose A,Das N,Roy S N,et al.Synthesis,characterization and corrosion performance evaluation of DDR membrane for H2 separation from HI decomposition reaction[J].International Journal of Hydrogen Energy,2014,39(24):12795-12803.
[9] Li L,Yang J,Li J,et al.Synthesis of high performance mordenite membranes from fluoride-containing dilute solution under microwave-assisted heating[J].Journal of Membrane Science,2016,512:83-92.
[10] Hu N,Li Y,Zhong S,et al.Microwave synthesis of zeolite CHA (chabazite) membranes with high pervaporation performance in absence of organic structure directing agents[J].Microporous & Mesoporous Materials,2016,228:22-29.
[11] Sato K,Sugimoto K,Kyotani T,et al.Synthesis,reproducibility,characterization,pervaporation and technical feasibility of preferentially b-oriented mordenite membranes for dehydration of acetic acid solution[J].Journal of Membrane Science,2011,385/386:20-29.
[12] Lee H,Dutta P K.Synthesis of free-standing chabazite-type films[J].Microporous & Mesoporous Materials,2000,38(2):151-159.
[13] Bajpai R,Wagner H D.Fast growth of carbon nanotubes using a microwave oven[J].Carbon,2015,82:327-336.
[14] Kim T,Jo C,Lim W G,et al.Facile conversion of activated carbon to battery anode material using microwave graphitization[J].Carbon,2016,104:106-111.
[15] Prášek J,Drbohlavová J,Chomoucká J,et al.Methods for carbon nanotubes synthesis-review[J].Journal of Materials Chemistry,2011,21(40):15872-15884.
[16] Cabello C P,Arean C O,Parra J B,et al.A rapid microwave-assisted synthesis of a sodium-cadmium metal-organic framework having improved performance as a CO2 adsorbent for CCS[J].Dalton Transactions,2015,44(21):9955-9963.
[17] Albuquerque G H,Fitzmorris R C,Ahmadi M,et al.Gas-liquid segmented flow microwave-assisted synthesis of MOF-74(Ni) under moderate pressures[J].Crystengcomm,2015,17(29):5502-5510.
[18] Lee Y R,Cho S M,Baeck S H,et al.Ti-MIL-125-NH2 membrane grown on a TiO2 disc by combined microwave/ultrasonic heating:Facile synthesis for catalytic application[J].Rsc Advances,2016,6:63286-63290.
[19] Kim K J,Li Y J,Kreider P B,et al.High-rate synthesis of Cu-BTC metal-organic frameworks[J].Chemical Communications,2013,49(98):11518-11520.
[20] Shah M,Mccarthy M C,Sachdeva S,et al.Current status of metal-organic framework membranes for gas separations:Promises and challenges[J].Industrial & Engineering Chemistry Research,2012,51(5):2179-2199.
[1] 王峰. MTP工艺副产轻质油在HZSM-5上催化裂解行为的研究[J]. 现代化工, 2018, 38(9): 122-126.
[2] 张耀日, 霍志萍, 张丽娟, 冯晴, 臧甲忠, 于海斌. SSZ-13分子筛合成及应用进展[J]. 现代化工, 2018, 38(9): 54-59.
[3] 刘佳, 隋铭皓, 盛力. Mn-MCM-41介孔分子筛的制备、表征及催化性能研究[J]. 现代化工, 2018, 38(7): 93-97.
[4] 赵帅, 刘亚亚, 马博文, 沈健. TiO2-β/SBA-15复合分子筛光催化氧化脱硫[J]. 现代化工, 2018, 38(7): 145-149.
[5] 贾建波, 杜贺贺, 黄光许, 刘全润, 邢宝林, 张传祥, 郭红玉, 潘结南. 褐煤非能源化利用研究进展[J]. 现代化工, 2018, 38(6): 24-27.
[6] 吴红梅, 肖昱, 郭宇, 李景阳, 苗世举, 赵亮. 氨基改性SBA-15介孔分子筛的制备及其铬离子吸附性能[J]. 现代化工, 2018, 38(6): 78-82.
[7] 景一操, 张怡, 吴煜, 刘学军. NaA分子筛膜的制备及其在吡啶脱水中的应用[J]. 现代化工, 2018, 38(6): 110-113.
[8] 缪平, 桑宇, 邢爱华. 纳米级ZSM-5分子筛的制备及其在甲醇制丙烯反应中的优势与劣势[J]. 现代化工, 2018, 38(5): 48-52.
[9] 佟鑫, 魏振浩, 朱学栋. 自模板法制多级孔ZSM-5及其在MTA反应中的应用[J]. 现代化工, 2018, 38(5): 150-154.
[10] 王亚培, 徐军, 张晓晓, 徐文鹏. 含HF和KCl体系中SAPO-17分子筛的快速稳定合成和表征[J]. 现代化工, 2018, 38(5): 159-163.
[11] 陈利利, 邱安定. ZSM-5分子筛掺杂双稀土金属用于低碳烷烃脱氢反应[J]. 现代化工, 2018, 38(4): 155-159.
[12] 张彪, 李晓娟, 李明明, 王兴光, 王欢, 赵阳. 油品脱硫吸附剂研发现状及发展趋势[J]. 现代化工, 2018, 38(3): 57-61.
[13] 朱宛萤, 赵鑫, 胡英成. 微波和离子液体辅助乙二醇提取椰壳木质素[J]. 现代化工, 2018, 38(3): 96-100.
[14] 胡旭睿, 郭斌, 王欣. 碳化硅负载Cu-Mn-CeOx催化剂的制备及其微波场中诱导甲苯氧化分解[J]. 现代化工, 2018, 38(3): 133-137.
[15] 洪晓东, 李顺利, 刘雨琳. 改性隔膜/隔层在锂硫电池中的应用进展[J]. 现代化工, 2018, 38(2): 30-33,35.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn