Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2017, Vol. 37 Issue (12): 14-18,20    DOI: 10.16606/j.cnki.issn0253-4320.2017.12.004
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
锂离子电池硅碳负极材料的最新研究进展
刘凡1, 秦利娟1, 刘艳侠1,2
1. 郑州中科新兴产业技术研究院, 郑州市储能科学与技术重点实验室, 河南 郑州 450000;
2. 中国科学院过程工程研究所, 离子液体清洁过程北京市重点实验室, 北京 100190
Latest research progress of silicon-carbon composite anode material for lithium ion battery
LIU Fan1, QIN Li-juan1, LIU Yan-xia1,2
1. Zhengzhou Key Laboratory of Energy Storage Science and Technology, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China;
2. Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Institute of Process Engineering, Beijing 100190, China
下载:  PDF (2680KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对近年来研究的硅基材料、硅碳复合材料以及影响硅碳负极材料性能的其他因素进行了总结,并对未来的研究趋势进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘凡
秦利娟
刘艳侠
关键词:  锂离子电池  负极材料  硅碳复合材料  黏结剂    
Abstract: The recent progress of silicon-based materials,silicon-carbon composite materials and the factors influencing on the electrochemical performance of anode materials are summarized,and the prospect of further development is expected ahead as well.
Key words:  lithium ion battery    anode material    silicon-carbon composite material    binder
收稿日期:  2017-06-13      修回日期:  2017-10-12           出版日期:  2017-12-20
TM911  
基金资助: 国家自然科学基金重点项目(91534109)
通讯作者:  刘艳侠(1982-),女,博士,研究方向为动力锂离子电池正负极材料的制备,通讯联系人,0371-66683301,yxliu@ipe.ac.cn。    E-mail:  yxliu@ipe.ac.cn
作者简介:  刘凡(1990-),男,硕士生
引用本文:    
刘凡, 秦利娟, 刘艳侠. 锂离子电池硅碳负极材料的最新研究进展[J]. 现代化工, 2017, 37(12): 14-18,20.
LIU Fan, QIN Li-juan, LIU Yan-xia. Latest research progress of silicon-carbon composite anode material for lithium ion battery. Modern Chemical Industry, 2017, 37(12): 14-18,20.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2017.12.004  或          http://www.xdhg.com.cn/CN/Y2017/V37/I12/14
[1] Han S,Jiang J Z,Huang Y S,et al.Hierarchical TiO2-SnO2-graphene aerogels for enhanced lithium storage[J].Physical Chemistry Chemical Physics,2015,17(3):1580-1584.
[2] Li W W,Chen S M,Yu J,et al.In-situ synthesis of interconnected SWCNT/OMC framework on silicon nanoparticles for high performance lithium-ion batteries[J].Green Energy & Environment,2016,1(1):91-99.
[3] Ashuri M,He Q,Shaw L L.Silicon as a potential anode material for Li-ion batteries:Where size,geometry and structure matter[J].Nanoscale,2016,8(1):74-103.
[4] Wan J Y,Kaplan A F,Zheng J,et al.Two dimensional silicon nanowalls for lithium ion batteries[J].Journal of Materials Chemistry A,2014,2(17):6051-6057.
[5] Wu H,Du N,Shi X X,et al.Rational design of three-dimensional macroporous silicon as high performance Li-ion battery anodes with long cycle fife[J].Journal of Power Sources,2016,331:76-81.
[6] Cho J H,Picraux S T.Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands[J].Nano Letters,2013,13(11):5740-5747.
[7] Suh S S,Yoon W Y,Kim D H,et al.Electrochemical behavior of SiOx anodes with variation of oxygen ratio for Li-ion batteries[J].Electrochimica Acta,2014,148:111-117.
[8] Yan N,Wang F,Zhong H,et al.Hollow porous SiO2 nanocubes towards high-performance anodes for lithium-ion batteries[J].Scientific Reports,2013,3:1568.
[9] Campbell B,Ionescu R,Tolchin M,et al.Carbon-coated,diatomite-derived nanosilicon as a high rate capable Li-ion battery Anode[J].Scientific Reports,2016,6:33050.
[10] 熊伟.硅碳负极材料研究进展[J].新材料产业,2016,(6):61-65.
[11] Lv P P,Zhao H L,Gao C H,et al.Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries[J].Electrochimica Acta,2015,152:345-351.
[12] 王英,肖方明,彭果戈,等.硅碳复合负极材料的制备及电化学性能[J].电源技术,2016,40(5):956-958.
[13] Xu Q,Li J Y,Sun J K,et al.Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes[J].Advanced Energy Materials,2016,7(3):1-6.
[14] Li Q L,Chen D Q,Li K,et al.Electrostatic self-assembly bmsi@C/rGo composite as anode material for lithium ion battery[J].Electrochimica Acta,2016,202:140-146.
[15] Lee S H,Park S,Kim M,et al.Supercritical carbon dioxide-assisted process for well-dispersed silicon/graphene composite as a Li ion battery anode[J].Scientific Reports,2016,6:32011.
[16] Liu X X,Chao D L,Zhang Q,et al.The roles of lthium-philic giant nitrogen-doped graphene in protecting micron-sized silicon anode from fading[J].Scientific Reports,2015,5:15665.
[17] Zhang Y C,You Y,Xin S,et al.Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries[J].Nano Energy,2016,25:120-127.
[18] Park A R,Kim J S,Kim K S,et al.Si-Mn/reduced graphene oxide nanocomposite anodes with enhanced capacity and stability for lithium-ion batteries[J].ACS applied Materials & Interfaces,2014,6(3):1702-1708.
[19] Lee D H,Shim H W,Kim D W.Facile synthesis of heterogeneous Ni-Si@C nanocomposites as high-performance anodes for Li-ion batteries[J].Electrochimica Acta,2014,146:60-67.
[20] Doyle R L,Lyons M G.The mechanism of oxygen evolution at superactivated gold electrodes in aqueous alkaline solution[J].Journal of Solid State Electrochemistry,2014,18(12):3271-3286.
[21] Liu D,Zhao Y,Tan R,et al.Novel conductive binder for high-performance silicon anodes in lithium ion batteries[J].Nano Energy,2017,36:206-212.
[22] Jeong Y K,Kwon T W,Lee I,et al.Hyperbranched beta-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries[J].Nano Letters,2014,14(2):864-870.
[23] Nguyen C C,Lucht B L.Comparative study of fluoroethylene carbonate and vinylene carbonate for silicon anodes in lithium ion batteries[J].Journal of the Electrochemical Society,2014,161(12):1933-1938.
[24] Wang W X,Yang S H.Enhanced overall electrochemical performance of silicon/carbon anode for lithium-ion batteries using fluoroethylene carbonate as an electrolyte additive[J].Journal of Alloys and Compounds,2017,695:3249-3255.
[1] 冯耀华, 李春雷, 艾灵. 锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2的产业化工艺研究[J]. 现代化工, 2018, 38(9): 174-179.
[2] 郝文, 周鹏, 余昊霖, 文晓刚. SnS2纳米花/石墨烯锂离子电池负极材料合成及其电化学性能研究[J]. 现代化工, 2018, 38(8): 103-107.
[3] 孙长兵, 陈思浩. 三氧化二铁和碳复合材料在锂离子电池负极中的研究新进展[J]. 现代化工, 2018, 38(6): 59-63.
[4] 陈玉红, 汪亮, 张贺, 胡亚伟. 锂离子电池阻燃添加剂TDCPP的研究[J]. 现代化工, 2018, 38(5): 128-130.
[5] 李永刚, 俞双林, 俞小花, 和晓才, 冯攀, 徐庆鑫, 徐亚飞, 谢刚. 不同形貌锌酸钙的制备及其在锌镍电池中的应用研究[J]. 现代化工, 2018, 38(5): 81-84,86.
[6] 郑典模, 陈昕, 郭红祥, 刘巍巍. 锂离子电池硅碳负极材料的制备及电化学性能研究[J]. 现代化工, 2018, 38(4): 118-121,123.
[7] 王一博, 赵九蓬. 3D打印柔性可穿戴锂离子电池电极[J]. 现代化工, 2018, 38(3): 81-86,88.
[8] 于小林, 吴显明, 丁心雄, 李叶华, 刘立瑶, 石青峰. 水热法制备纳米片钛酸锂及其性质研究[J]. 现代化工, 2018, 38(2): 83-86.
[9] 吴洁洁. 电池行业研究与展望[J]. 现代化工, 2017, 37(9): 1-4,6.
[10] 程禹, 赵晓冲, 陈慧媛, 王刚, 王亚萍, 林红. 钛酸锂基锂离子电池负极材料的研究进展[J]. 现代化工, 2017, 37(5): 21-24,26.
[11] 孙镇, 向延鸿, 李剑, 吴贤文, 刘志雄, 伍建华, 熊利芝, 何则强, 吴显明. Li1.2Ni0.2Mn0.6O2溶胶-凝胶制备与电化学性能研究[J]. 现代化工, 2017, 37(5): 85-88.
[12] 马小彪, 陈思浩, 高伟. 静电纺丝制备锂离子电池负极材料多孔碳纳米纤维的研究[J]. 现代化工, 2017, 37(5): 131-134,136.
[13] 王一博, 赵九蓬. 3D打印低扭曲度超厚分级孔锂离子电池电极[J]. 现代化工, 2017, 37(12): 118-122.
[14] 刘金宝, 刘益林, 陈言伟, 蔺华林, 韩生. Fe2O3与氧化石墨烯复合材料在锂电池中应用研究进展[J]. 现代化工, 2016, 36(5): 36-39.
[15] 陈守彬, 吴显明, 陈上, 刘志雄, 丁其晨. LiAlO2包覆尖晶石LiMn2O4及电化学性能研究[J]. 现代化工, 2016, 36(4): 68-71.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn