Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2017, Vol. 37 Issue (11): 110-114    DOI: 10.16606/j.cnki.issn0253-4320.2017.11.025
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
花状CuS/PANI复合材料的制备及其电磁屏蔽性能研究
郁思冲, 沈勇, 沈逸飞, 胡小赛, 吕佳颖, 王珂
上海工程技术大学服装学院, 上海 201620
Preparation of flower-like CuS/PANI composites and their performances for shielding electromagnetic interference
YU Si-chong, SHEN Yong, SHEN Yi-fei, HU Xiao-sai, LV Jia-ying, WANG Ke
Fashion College, Shanghai University of Engineering Science, Shanghai 201620, China
下载:  PDF (2949KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 在花状CuS微球表面原位聚合生成聚苯胺(PANI),制备核-壳结构花状CuS/PANI复合材料,并研究了花状CuS/PANI的电磁屏蔽效能。XRD、SEM、TEM、TG、FT-IR和UV-Vis等表征结果证明PANI原位聚合在六方相花状CuS表面及其相互作用的存在。电磁屏蔽效能测试结果表明,CuS/PANI的屏蔽效能与CuS质量分数密切相关。当硫化铜质量分数为50%,匹配层厚度3 mm,CuS/PANI在300 kHz~3.0 GHz频率范围内的屏蔽效能小于-18 dB,在2.78 GHz左右有最大损耗-45.2 dB。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郁思冲
沈勇
沈逸飞
胡小赛
吕佳颖
王珂
关键词:  CuS/PANI  电磁屏蔽  损耗    
Abstract: The novel flower-like CuS/PANI composites with core-shell structure are prepared through in-situ polymerization of PANI on the surface of flower-like CuS microspheres. The electromagnetic interference (EMI) shielding effectiveness (SE) of the prepared composites are studied. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectroscopy, UV-Vis optical absorption spectroscopy, and thermogravimetric analysis (TG) are used to characterize the obtained composites. The results reveal that flower-like CuS is uniformly coated by PANI shell and the interaction between CuS and PANI exists. Most importantly, compared with original CuS and pure PANI, the novel flower-like PANI/CuS composites exhibits remarkably enhanced shielding effectiveness against electromagnetic interference. The shielding effectiveness of PANI/CuS is closely related to the mass fraction of CuS. When the mass fraction of CuS is 50% and the thickness of matching layer is 3 mm, the shielding effectiveness of PANI/CuS is below -18 dB in the frequency range of 300 KHz to 3 GHz and the maximum loss of electromagnetic interference reaches -45.2 dB at around 2.78 GHz.
Key words:  CuS/PANI    shielding electromagnetic interference    loss
收稿日期:  2017-05-09                出版日期:  2017-11-20
TQ050.4+21  
基金资助: 上海市教委科研创新(重点)项目(12zz180)
通讯作者:  沈勇(1959-),博士,教授,研究方向为纺织品生态加工及功能纺织材料研究,通讯联系人,shenyong@sues.edu.cn    E-mail:  shenyong@sues.edu.cn
作者简介:  郁思冲(1997-),男,本科在读,从事电磁屏蔽及吸波材料的研究,2351747094@qq.com。
引用本文:    
郁思冲, 沈勇, 沈逸飞, 胡小赛, 吕佳颖, 王珂. 花状CuS/PANI复合材料的制备及其电磁屏蔽性能研究[J]. 现代化工, 2017, 37(11): 110-114.
YU Si-chong, SHEN Yong, SHEN Yi-fei, HU Xiao-sai, LV Jia-ying, WANG Ke. Preparation of flower-like CuS/PANI composites and their performances for shielding electromagnetic interference. Modern Chemical Industry, 2017, 37(11): 110-114.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2017.11.025  或          http://www.xdhg.com.cn/CN/Y2017/V37/I11/110
[1] 胡小赛, 沈勇, 王黎明, 等.石墨烯基吸波材料研究新进展[J].宇航材料工艺, 2015, 6:1-7.
[2] 李光彬, 侯朝霞, 王少洪, 等.石墨烯复合材料的研究进展[J].兵器材料科学与工程, 2014, 37(3):122-126.
[3] 刘辉, 董晓楠, 孙超超.石墨烯/二氧化钛复合光催化剂的制备及可见光催化性能研究[J].陕西科技大学学报, 2013, 31(1):23-28.
[4] 胡小赛, 沈勇, 王黎明, 等.吸波材料研究新进展[J].炭素技术, 2016, 2:11-17.
[5] Hu X S, Shen Y, Xu L H, et al.Preparation of flower-like CuS by solvothermal method for photocatalytic, UV protection and EMI shielding applications[J].Applied Surface Science, 2016, 385:162-170.
[6] 袁冰清, 郁黎明, 盛雷梅, 等.石墨烯/聚苯胺复合材料的电磁屏蔽性能[J].复合材料学报, 2013, 30(1):22-26.
[7] 俞菁, 沈勇, 张慧芳, 等.铜/聚苯胺/涤纶复合电磁屏蔽织物的制备及性能研究[J].河北科技大学学报, 2016, 37(2):185-191.
[8] 俞丹, 穆世鹏, 王炜.银/聚苯胺/涤纶电磁屏蔽织物的制备[J].印染, 2016, 6:5-10.
[9] Almeida N A, Martin P M.Teixeira S S, et al.TiO2/graphene oxide immobilized in P(VDF-TrFE) electrospunmembranes with enhanced visible-light-induced photocatalytic performance[J].J Mater Sci, 2016, 51:6974-6986.
[10] Meng N N, Zhou Y F, Nie W Y, et al.CuS/MoS2 nanocomposite with high solar photocatalytic activity[J].J Nanopart Res, 2015, 17:300-309.
[11] 谭志刚, 朱启安, 郭讯枝, 等.溶剂热法合成硫化铜花状微米球超结构及其光催化性能[J].化学学报, 2011, 69(23):2812-2820.
[12] 李倩文.硫化铜及其基化合物的溶刊热合成及但离子电池性能研究[D].合肥:中国科学技术大学, 2012:1-78.
[13] 胡小赛, 沈勇, 王黎明, 等.吸波材料结构、性能及应用研究进展[J].应用化工, 2015, 9:1741-1746.
[14] Hu X S, Shen Y, Zhang Y T, et al.Synthesis of flower-like CuS/reduced graphene oxide(RGO) composites with significantly enhanced photocatalyticperformance[J].Journal of Alloys and Compounds, 2017, 695:1178-1785.
[15] Hu X, Shen Y, Xu L H, et al.Preparation of flower-like CuS by solvothermal method and its photodegradation and UV protection[J].Journal of Alloys and Compounds, 2016, 674:289-294.
[16] Qi Hui, Huang Jianfeng, Cao Liyun, et al.Controlled synthesis and optical properties of doughnut-aggregated hollow sphere-like CuS[J].Ceramics International, 2012, 38, 6659-6664.
[17] Yang Zhiwei, Wan Yizao, Xiong Guangyao, et al.Facile synthesis of ZnFe2O4/reduced graphene oxide nanohybrids forenhanced microwave absorption properties[J].Materials Research Bulletin, 2015, 61:292-297.
[18] Xu Fenfang, Ma Li, Huo Qisheng, et al.Microwave absorbing properties and structural design of microwave absorbers based on polyaniline and polyaniline/magnetite nanocomposite[J].Journal of Magnetism and Magnetic Materials, 2015, 374:311-316.
[19] Liu Panbo, Huang Ying.Decoration of reduced graphene oxide with polyaniline film and their enhanced microwave absorption properties[J].Journal of Polymer Research, 2014, 21:430-434.
[20] Ting Tzu-Hao, Wu Kuo-Hui.Synthesis and electromagnetic wave-absorbing properties of BaTiO3/polyaniline structured composites in 2-40 GHz[J].Journal of Polymer Research, 2013, 20:127-132.
[21] Guo Fengying, Zi Wenwen, Ji Guijuan, et al.Polyaniline containing W-type hexaferrite composites for microwave absorption in high-frequency applications[J].Journal of Polymer Research, 2015, 22:48-56.
[1] 程晓圆, 孙晓刚, 庞志鹏, 付琦. 修饰后多壁碳纳米管的分散性对比及其应用研究[J]. 现代化工, 2015, 35(6): 87-90.
[2] 史先召, 孙承莉, 黄伟金, 钱慧, 黄福光, 李岩. 气、液相环氧丙烷循环冷凝系统的设计研究[J]. 现代化工, 2015, 35(4): 148-150.
[3] 马耀,邢贺民,段滋华. 基于微波回波法检测混合液组分技术研究[J]. , 2013, 32(3): 0-0.
[4] 刘勇峰,吴明,吕露. 油气回收技术发展现状及趋势[J]. , 2011, 31(3): 0-0.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn