Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2017, Vol. 37 Issue (8): 50-54    DOI: 10.16606/j.cnki.issn0253-4320.2017.08.012
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
微生物电解池在氢气制备中的应用
薄涛, 翟洪艳, 季民
天津大学环境科学与工程学院, 天津 300350
Applications of microbial electrolysis cell in hydrogen production
BO Tao, ZHAI Hong-yan, JI Min
College of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
下载:  PDF (1434KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 对生物电化学系统进行了简单介绍,并从电极、催化剂、外加电压和电解液体系4个方面对MEC产氢的影响进行了综述,展望了利用MEC产氢的未来发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薄涛
翟洪艳
季民
关键词:  生物电化学  微生物燃料电池  微生物电解池  生物氢气    
Abstract: The bio-electrochemical systems are introduced briefly.The influences of electrode,catalyst,external voltage and electrolyte system on hydrogen production in microbial electrolysis cell (MEC) are reviewed.Finally,the development of MEC in biohydrogen production is advanced.
Key words:  bio-electrochemical systems (BES)    microbial fuel cell (MFC)    microbial electrolysis cell (MEC)    bio-hydrogen
收稿日期:  2016-12-15      修回日期:  2017-06-02           出版日期:  2017-08-20
X703.1  
基金资助: 天津市应用基础与前沿技术研究计划(青年项目)(14JCQNJC08300);天津大学自主创新基金(2015XRG-0049)
通讯作者:  季民(1957-),男,硕士,教授,研究方向为污水生物处理原理及技术,通讯联系人,jimin@tju.edu.cn。    E-mail:  jimin@tju.edu.cn
作者简介:  薄涛(1983-),男,博士,研究方向为生物电化学与废弃物资源化利用,botao233@163.com
引用本文:    
薄涛, 翟洪艳, 季民. 微生物电解池在氢气制备中的应用[J]. 现代化工, 2017, 37(8): 50-54.
BO Tao, ZHAI Hong-yan, JI Min. Applications of microbial electrolysis cell in hydrogen production. Modern Chemical Industry, 2017, 37(8): 50-54.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2017.08.012  或          http://www.xdhg.com.cn/CN/Y2017/V37/I8/50
[1] Pham T H,Rabaey K,Aelterman P,et al.Microbial fuel cells in relation to conventional anaerobic digestion technology[J].Engineering in Life Sciences,2006,6(3):285-292.
[2] Hu H,Fan Y,Liu H.Hydrogen production using single-chamber membrane-free microbial electrolysis cells[J].Water Res,2008,42(15):4172-4178.
[3] Chaudhuri S K,Lovley D R.Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells[J].Nat Biotechnol,2003,21(10):1229-1232.
[4] Rozendal R A,Hamelers H V M,Euverink GJW,et al.Principle and perspectives of hydrogen production through biocatalyzed electrolysis[J].Int J Hydrogen Energ,2006,31(12):1632-1640.
[5] Min B,Logan B E.Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell[J].Environ Sci Technol,2004,38(21):5809-5814.
[6] Siqi Y,Zhongliang L,Junxian H,et al.Preparation and properties of catalyst of MnO2 and activated carbon for microbial fuel cells[J].Renewable Energy Resources,2016,34(2):311-316.
[7] Selembo P A,Merrill M D,Logan B E.The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells[J].J Power Sources,2009,190(2):271-278.
[8] Benemann J.Hydrogen biotechnology:Progress and prospects[J].Nat Biotechnol,1996,14(9):1101-1103.
[9] Su M,Wei L,Qiu Z,et al.Hydrogen production in single chamber microbial electrolysis cells with stainless steel fiber felt cathodes[J].Journal of Power Sources,2016,301:29-34.
[10] Tartakovsky B,Manuel M F,Wang H,et al.High rate membrane-less microbial electrolysis cell for continuous hydrogen production[J].International Journal of Hydrogen Energy,2009,34(2):672-677.
[11] Kadier A,Simayi Y,Kalil M S,et al.A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas[J].Renewable Energy,2014,71:466-472.
[12] Wang X,Cheng S,Feng Y,et al.Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells[J].Environmental Science & Technology,2009,43(17):6870-6874.
[13] Kato Marcus A,Torres C I,Rittmann B E.Conduction-based modeling of the biofilm anode of a microbial fuel cell[J].Biotechnol Bioeng,2007,98(6):1171-1182.
[14] Ramasamy R P,Ren Z,Mench M M,et al.Impact of initial biofilm growth on the anode impedance of microbial fuel cells[J].Biotechnology and Bioengineering,2008,101(1):101-108.
[15] Hrapovic S,Manuel M F,Luong J H T,et al.Electrodeposition of nickel particles on a gas diffusion cathode for hydrogen production in a microbial electrolysis cell[J].Int J Hydrogen Energ,2010,35(14):7313-7320.
[16] Ambler J R,Logan B E.Evaluation of stainless steel cathodes and a bicarbonate buffer for hydrogen production in microbial electrolysis cells using a new method for measuring gas production[J].International Journal of Hydrogen Energy,2011,36(1):160-166.
[17] Jeremiasse A W,Hamelers H V M,Saakes M,et al.Ni foam cathode enables high volumetric H2 production in a microbial electrolysis cell[J].International Journal of Hydrogen Energy,2010,35(23):12716-12723.
[18] Jeremiasse A W,Bergsma J,Kleijn J M,et al.Performance of metal alloys as hydrogen evolution reaction catalysts in a microbial electrolysis cell[J].International Journal of Hydrogen Energy,2011,36(17):10482-10489.
[19] Hu H Q,Fan Y Z,Liu H.Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious metal catalysts[J].Int J Hydrogen Energ,2009,34(20):8535-8542.
[20] Olivares-Ramírez J M,Campos-Cornelio M L,Uribe Godínez J,et al.Studies on the hydrogen evolution reaction on different stainless steels[J].International Journal of Hydrogen Energy,2007,32(15):3170-3173.
[21] Tartakovsky B,Manuel M F,Neburchilov V,et al.Biocatalyzed hydrogen production in a continuous flow microbial fuel cell with a gas phase cathode[J].J Power Sources,2008,182(1):291-297.
[22] Jeremiasse A W,Hamelers H V,Buisman C J.Microbial electrolysis cell with a microbial biocathode[J].Bioelectrochemistry,2010,78(1):39-43.
[23] Chen Y,Shen J,Huang L,et al.Enhanced Cd(Ⅱ) removal with simultaneous hydrogen production in biocathode microbial electrolysis cells in the presence of acetate or NaHCO3[J].International Journal of Hydrogen Energy,2016,41(31):13368-13379.
[24] Call D F,Merrill M D,Logan B E.High surface area stainless steel brushes as cathodes in microbial electrolysis cells[J].Environ Sci Technol,2009,43(6):2179-2183.
[25] Munoz L D,Erable B,Etcheverry L,et al.Combining phosphate species and stainless steel cathode to enhance hydrogen evolution in microbial electrolysis cell (MEC)[J].Electrochemistry Communications,2010,12(2):183-186.
[26] Cheng S A,Logan B E.Sustainable and efficient biohydrogen production via electrohydrogenesis[J].PNAS,2007,104(47):18871-18873.
[27] Lu L,Hou D,Wang X,et al.Active H2 harvesting prevents methanogenesis in microbial electrolysis cells[J].Environmental Science & Technology Letters,2016,3(8):286-290.
[28] Merrill M D,Logan B E.Electrolyte effects on hydrogen evolution and solution resistance in microbial electrolysis cells[J].J Power Sources,2009,191(2):203-208.
[29] Cai W,Liu W,Cui D,et al.Hydrogen production from buffer-free anaerobic fermentation liquid of waste activated sludge using microbial electrolysis system[J].RSC Adv,2016,6(45):38769-38773.
[30] Sasaki K,Morita M,Matsumoto N,et al.Construction of hydrogen fermentation from garbage slurry using the membrane free bioelectrochemical system[J].J Biosci Bioeng,2012,114(1):64-69.
[1] 李福健, 成少安. 微生物电解制氢反应器的并联堆叠放大[J]. 现代化工, 2018, 38(6): 162-166.
[2] 卓露, 汪兴兴, 吕帅帅, 黄明宇, 倪红军. 微生物燃料电池技术的研究进展[J]. 现代化工, 2017, 37(8): 41-44.
[3] 康冰艳, 侯彬, 卢新陈. 微生物燃料电池阴极碳载体催化剂的研究进展[J]. 现代化工, 2017, 37(8): 55-59.
[4] 孙瑶, 赵金辉, 姜成, 吴梦柯, 谢西, 林晨彤. 人工湿地-微生物燃料电池耦合系统的研究现状与展望[J]. 现代化工, 2017, 37(8): 60-63.
[5] 原诗瑶, 侯彬, 周杰. 泡沫镍在电容器和微生物燃料电池方面的应用[J]. 现代化工, 2017, 37(8): 67-71.
[6] 王丽, 李雪, 王琳. 湿地型微生物燃料电池处理废水及同步产电研究[J]. 现代化工, 2017, 37(6): 154-157.
[7] 倪红军, 陈祥, 汪兴兴, 陈青青, 吕帅帅. 微生物燃料电池中产电微生物的研究进展[J]. 现代化工, 2017, 37(3): 46-49.
[8] 张毅, 孔晓英, 孙永明, 李连华, 牛红志, 袁振宏. 海藻资源能源转化技术研究进展[J]. 现代化工, 2015, 35(8): 50-54.
[9] 范方舟, 翟洪艳, 季民. 微生物燃料电池在治污产能方面的研究进展[J]. 现代化工, 2015, 35(12): 19-23.
[10] 张存胜, 崔凤杰, 骆琳, 马海乐, 赵鹏翔, 张军宏. 微生物电解池制氢技术研究进展[J]. 现代化工, 2015, 35(12): 48-51,53.
[11] 向龙, 王晓慧, 海热提, 刘睿, 付进南, 李媛, 徐梦莹. 微生物燃料电池阳极材料的修饰研究进展[J]. 现代化工, 2015, 35(1): 48-52.
[12] 马骏, 陈青青, 裴一, 倪红军. 微生物燃料电池各组件性能及应用研究[J]. 现代化工, 2014, 34(7): 16-19.
[13] 陈杰, 李超超, 方星亮, 羊家威, 成少安. 微生物燃料电池空气阴极和扩大化的研究进展[J]. 现代化工, 2014, 34(10): 16-21.
[14] 范德玲,王利勇,陈英文,祝社民,沈树宝. 微生物燃料电池最新研究进展[J]. , 2011, 31(6): 0-0.
[15] 王利勇,叶晔捷,陈英文,祝社民,沈树宝. 废水同步生物处理与微生物电解池产氢的研究进展[J]. , 2010, 30(9): 0-0.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn