Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2017, Vol. 37 Issue (8): 36-40    DOI: 10.16606/j.cnki.issn0253-4320.2017.08.009
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
沉积物微生物燃料电池产电因素研究进展
潘阳, 侯运华
齐鲁工业大学生物工程学院, 山东 济南 250353
Research advances on factors for SMFCs to generate electricity
PAN Yang, HOU Yun-hua
Department of Bioengineering, Qilu University of Technology, Jinan 250353, China
下载:  PDF (1452KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 介绍了SMFCs产电原理及应用,对产电微生物、阳极、阴极、沉积物等方面对产电影响进行了综述,其中阳极和阴极分别从材料及材料修饰等方面综述。论述了最新的双阳极SMFCs体系发展。根据目前SMFCs的研究前景、挑战以及发展趋势对其未来发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘阳
侯运华
关键词:  产电原理  电子传递  沉积物  电极    
Abstract: The theory for SMFCs to generate electricity and applications are introduced.The effects of electricity producing microorganism,anode,cathode,sediment on electricity production are summarized,of which anode and cathode are reviewed from materials and material modification separately.The novel research progress of double-anode SMFCs system is analyzed.The future prospects for utilizing SMFCs to generate electricity are proposed in light of the current research progress,challenges,and trends.
Key words:  electricity generating theory    electron transfer    sediment    electrode
收稿日期:  2017-01-12                出版日期:  2017-08-20
TM911  
基金资助: 山东省高等学校科技计划项目(J10LC08)
通讯作者:  侯运华(1979-),男,博士,副教授,研究方向为微生物,通讯联系人,0531-89631776,houyunhua@qlu.edu.cn。    E-mail:  houyunhua@qlu.edu.cn
作者简介:  潘阳(1990-),男,硕士生
引用本文:    
潘阳, 侯运华. 沉积物微生物燃料电池产电因素研究进展[J]. 现代化工, 2017, 37(8): 36-40.
PAN Yang, HOU Yun-hua. Research advances on factors for SMFCs to generate electricity. Modern Chemical Industry, 2017, 37(8): 36-40.
链接本文:  
http://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2017.08.009  或          http://www.xdhg.com.cn/CN/Y2017/V37/I8/36
[1] Wang A J,Cheng H Y,Ren N Q,et al.Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery[J].Front Env Sci Eng,2012,6(4):569-574.
[2] Wu X Y,Fei T,Song T S,et al.Effect of zeolite-coated anode on the performance of microbial fuel cells[J].Journal of Chemical Technology and Biotechnology,2015,90(1):87-92.
[3] Thomas Y R J,Picot M,Carer A,et al.A single sediment-microbial fuel cell powering a wireless telecommunication system[J].J Power Sourcs,2013,241(241):703-708.
[4] Call D F,Logan B E.Lactate oxidation coupled to iron or electrode reduction by Geobacter sulfurreducens PCA[J].Appl Environ Microbiol,2011,77(24):8791-8794.
[5] Zhu N,Chen X,Zhang T,et al.Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes[J].Bioresour Technol,2011,102(1):422-426.
[6] Logan B E,Hamelers B,Rozendal R,et al.Microbial fuel cells:Methodology and technology[J].Environ Sci Technol,2006,40(17):5181-5192.
[7] Sun M,Zhang F,Tong Z H,et al.A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1[J].Biosens Bioelectron,2010,26(2):338-343.
[8] Haque N,Cho D,Kwon S.Characteristics of electricity production by metallic and nonmetallic anodes immersed in mud sediment using sediment microbial fuel cell[C]//IOP Conference Series:Mater Sci Eng IOP Publishing,2015.
[9] Kim S I,Lee J W,Roh S H.Performance of polyacrylonitrile-carbon nanotubes composite on carbon cloth as electrode material for microbial fuel cells[J].J Nanosci Nanotechno,2011,11(2):1364-1367.
[10] Liang P,Wang H,Xia X,et al.Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells[J].Biosens Bioelectron,2011,26(6):3000-3004.
[11] Ci S,Wen Z,Chen J,et al.Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells[J].Electrochem Commun,2012,14(1):71-74.
[12] Fu Y B,Liu Z H,Su G,et al.Modified carbon anode by MWCNTs/PANI used in marine sediment microbial fuel cell and its electrochemical performance[J].Fuel Cells,2016,16(3):377-383.
[13] Li X,Zhu N,Wang Y,et al.Animal carcass wastewater treatment and bioelectricity generation in up-flow tubular microbial fuel cells:Effects of HRT and non-precious metallic catalyst[J].Bioresour Technol,2013,128(1):454-460.
[14] 涂丽杏,朱能武,吴平霄,等.羧基化碳纳米管载铂催化剂对微生物燃料电池阴极氧还原性能的影响[J].环境科学,2013,34(4):1617-1622.
[15] Zhu D,Wang D B,Song T S,et al.Effect of carbon nanotube modified cathode by electrophoretic deposition method on the performance of sediment microbial fuel cells[J].Biotechnol Lett,2015,37(1):101-107.
[16] 何卫,浦龙娟,周毅,等.还原态氧化石墨烯载Pd纳米催化剂对甲酸氧化的电催化性能[J].中国科学:化学,2011,41(12):1805-1810.
[17] Ren Y P,Pan D Y,Li X F,et al.Effect of polyaniline-graphene nanosheets modified cathode on the performance of sediment microbial fuel cell[J].Journal of Chemical Technology and Biotechnology,2013,88(10):1946-1950.
[18] Wang D B,Song T S,Guo T,et al.Electricity generation from sediment microbial fuel cells with algae-assisted cathodes[J].Int J Hydrogen Energ,2014,39(25):13224-13230.
[19] Ma M,You S,Gong X,et al.Silver/iron oxide/graphitic carbon composites as bacteriostatic catalysts for enhancing oxygen reduction in microbial fuel cells[J].J Power Sources,2015,283:74-83.
[20] Li D,Qu Y,Liu J,et al.Enhanced oxygen and hydroxide transport in cathode interface by efficiently antibacterial property of silver nanoparticle modified activated carbon cathode in microbial fuel cells[J].Acs Appl Mater Interfaces,2016,8(32):20814-20821.
[21] Dai Y,Chan Y Z,Jiang B J,et al.Bifunctional Ag/Fe/N/C Catalysts for enhancing oxygen reduction via cathodic biofilm inhibition in microbial fuel cells[J].Acs Appl Mater Interfaces,2016,8(11):6992-7002.
[22] 薄晓,李鹏,赵晓峰,等.废水微生物燃料池阳极碳毡的产电特性的研究[J].化工新型材料,2014,42(12):126-129.
[23] 柳昭慧,宰学荣,周长阳,等.外源营养物对海底沉积物微生物燃料电池电化学性能的影响[J].材料开发与应用,2016,31(3):33-39.
[24] Sacco N J,Figuerola E L,Pataccini G,et al.Performance of planar and cylindrical carbon electrodes at sedimentary microbial fuel cells[J].Bioresour Technol,2012,126(6):328-335.
[25] Wu D,Xing D F,Lu L,et al.Ferric iron enhances electricity generation by Shewanella oneidensis MR-1 in MFCs[J].Bioresour Technol,2013,135(2):630-634.
[26] Zhao Y N,Li X F,Ren Y P,et al.Effect of Fe(Ⅲ) on the performance of sediment microbial fuel cells in treating waste-activated sludge[J].Rsc Advances,2016,6(53):47974-47980.
[27] Cai Y,Yang N,Ren Y,et al.Effect of graphite fibers on the performance of sediment microbial fuel cell[J].Environ Prog Sustain,2016,35(3):876-881.
[28] An J,Kim B,Nam J,et al.Comparison in performance of sediment microbial fuel cells according to depth of embedded anode[J].Bioresour Technol,2013,127(1):138-142.
[29] Lee Y S,An J,Kim B,et al.Increased power in sediment microbial fuel cell:Facilitated mass transfer via a water-layer anode embedded in sediment[J].Plos One,2015,10(12):1-12.
[30] Kim J,Kim B,An J,et al.Development of anode zone using dual-anode system to reduce organic matter crossover in membraneless microbial fuel cells[J].Bioresour Technol,2016,213:140-145.
[1] 张东霞, 田子欣. 基于银掺杂聚L-精氨酸修饰金电极的布洛芬药物传感器的研究[J]. 现代化工, 2018, 38(8): 236-238,240.
[2] 郑朝, 孙明轩, 张强, 吴泓要. 二硫化钼薄膜的原位制备及其光电化学性能研究[J]. 现代化工, 2018, 38(4): 122-125.
[3] 麻晓越, 孙治荣. 电催化技术在有机化工废水处理中的研究进展[J]. 现代化工, 2018, 38(3): 42-46.
[4] 王一博, 赵九蓬. 3D打印柔性可穿戴锂离子电池电极[J]. 现代化工, 2018, 38(3): 81-86,88.
[5] 赵丽芬, 焦晨旭, 隋琪琪. 乙炔黑修饰碳糊电极测定汞离子[J]. 现代化工, 2018, 38(1): 213-216.
[6] 项玮. PLE萃取-GPC净化-LC-MS/MS法测定沉积物中8种性激素[J]. 现代化工, 2017, 37(9): 206-210.
[7] 吕祥, 谢刚, 和晓才, 俞小花, 李荣兴, 范硕阳. 球形氢氧化镍的制备及其电化学性能研究[J]. 现代化工, 2017, 37(7): 87-90,92.
[8] 赵丽芬, 焦晨旭. DNA电化学传感器用于重金属离子检测的研究[J]. 现代化工, 2017, 37(5): 206-209.
[9] 倪红军, 陈祥, 汪兴兴, 陈青青, 吕帅帅. 微生物燃料电池中产电微生物的研究进展[J]. 现代化工, 2017, 37(3): 46-49.
[10] 李健, 闫龙, 亢玉红, 王玉飞, 马亚军, 范明豪. 三维电极电化学动态循环处理氨氮废水研究[J]. 现代化工, 2017, 37(3): 133-136,138.
[11] 李永娟, 周红艳, 虎玉森, 王宁. 双硫腙修饰电极超声波溶出伏安法测定痕量汞[J]. 现代化工, 2017, 37(3): 207-209.
[12] 杜银, 吕其坤, 顾修全. 新型可见光响应型CdS光阳极的研究进展[J]. 现代化工, 2017, 37(2): 25-30.
[13] 王一博, 赵九蓬. 3D打印低扭曲度超厚分级孔锂离子电池电极[J]. 现代化工, 2017, 37(12): 118-122.
[14] 姜晓琳, 王诗瀚. 细菌纤维素复合材料应用进展[J]. 现代化工, 2017, 37(11): 57-61.
[15] 王洪建, 许世森, 程健, 张瑞云, 王鹏杰, 任永强. 质子交换膜燃料电池膜电极性能特性研究[J]. 现代化工, 2017, 37(1): 140-143.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2003, 23(5): 0 .
[5] . [J]. , 2009, 29(6): 0 .
[6] . [J]. , 2010, 30(3): 0 .
[7] . [J]. , 2010, 30(7): 0 .
[8] . [J]. , 2007, 27(2): 0 .
[9] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[10] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn